Algebra III Final AY2007/8

- 1. Let $a = \sqrt[5]{2}$, $\zeta = e^{2\pi\sqrt{-1}/5} \in C$, $E = Q(a, \zeta)$, $F = Q(\zeta)$ and K = Q(a). Show the following. (5pts $\times 14 = 70$ pts)
 - (a) $Irr_{O}(a) = t^5 2.$
 - (b) $\operatorname{Irr}_{\boldsymbol{Q}}(\zeta) = t^4 + t^3 + t^2 + t + 1.$
 - (c) $(E: Q) = \dim_{Q} E = 20.$
 - (d) $\operatorname{Irr}_F(a) = t^5 2.$
 - (e) F is a splitting field of $t^4 + t^3 + t^2 + t + 1$ over Q.
 - (f) K is not a normal extension of Q.
 - (g) Every element of E is algebraic over Q and E is a normal extension of Q.
 - (h) Suppose $\pi : E \to C$ is a ring homomorphism such that $\pi(1) = 1$. Then π is injective and $\pi(m/n) = m/n$ for all integers m, n with $n \neq 0$.
 - (i) Suppose $\pi : E \to C$ is a ring homomorphism such that $\pi(1) = 1$. Then $\pi(E) = E$. (Hint: First show that $\pi(a)$ is a root of $t^5 - 2$ and $\pi(\zeta)$ is a root of $t^4 + t^3 + t^2 + t + 1$.)
 - (j) There is $\sigma \in \operatorname{Gal}(E/F)$ such that $\sigma(a) = a\zeta$.
 - (k) There is $\tau \in \operatorname{Gal}(E/K)$ such that $\tau(\zeta) = \zeta^2$.
 - (l) $\operatorname{Gal}(E/Q)$ is a non-abelian group.
 - (m) Let $\pi \in \operatorname{Gal}(E/\mathbf{Q})$. Then $\pi(F) = F$ and the mapping

 $\phi : \operatorname{Gal}(E/Q) \to \operatorname{Gal}(F/Q) (\pi \mapsto \pi_{|F})$

is a surjective group homomorphism, where $\pi_{|F}$ denotes the restriction of π to F.

- (n) $\operatorname{Gal}(E/F) \lhd \operatorname{Gal}(E/\mathbf{Q})$ and $\operatorname{Gal}(E/\mathbf{Q})/\operatorname{Gal}(E/F) \simeq \mathbf{Z}_4$, a cyclic group of order 4.
- 2. Let L be a field with 27 elements. Show the following. $(5pts \times 6 = 30 pts)$
 - (a) Every element $x \in L$ satisfies $x^{27} = x$.
 - (b) *L* contains a subfield *S* with three elements and x+x+x = 0 for all elements of $x \in L$. (Hint: Let 1 be the identity element of *L*. Consider a mapping $\pi : \mathbb{Z} \to L(n \mapsto n \cdot 1)$.)
 - (c) L contains all roots of $t^3 t + 1 = 0$ and L is normal over S.
 - (d) Let $a \in L$ be a root of $t^3 t + 1 = 0$. Find the order of a, i.e., $\min\{n \in \mathbb{N} \mid a^n = 1\}$.
 - (e) Let $\sigma: L \to L \ (x \mapsto x^3)$. Then σ is an automorphism of L.
 - (f) $\operatorname{Gal}(L/S) = \{id_L, \sigma, \sigma^2\}.$

Hiroshi Suzuki, International Christian University

Solutions to Algebra III Final AY2007/8

- 1. Let $a = \sqrt[5]{2}$, $\zeta = e^{2\pi\sqrt{-1}/5} \in C$, $E = Q(a, \zeta)$, $F = Q(\zeta)$ and K = Q(a). Show the following. (5pts × 14 = 70pts)
 - (a) $\operatorname{Irr}_{\boldsymbol{Q}}(a) = t^5 2.$

Solution. Since $t^5 - 2$ is irreducible over Q by Eisenstein's criterion and Gauss' lemma, and a is a root of it, we have $\operatorname{Irr}_{Q}(a) = t^5 - 2$.

(b) $\operatorname{Irr}_{\boldsymbol{O}}(\zeta) = t^4 + t^3 + t^2 + t + 1.$

Solution. Since $\zeta^5 = 1$ and $\zeta \neq 1$, ζ is a root of $p(t) = t^4 + t^3 + t^2 + t + 1$. Since $p(t+1) = t^4 + 5t^3 + 10t^2 + 10t + 5$, this is irreducible over \boldsymbol{Q} by Eisenstein's criterion and Gauss' lemma. Hence p(t) itself is irreducible. Therefore $\operatorname{Irr}_{\boldsymbol{Q}}(\zeta) = t^4 + t^3 + t^2 + t + 1$.

- (c) $(E : \mathbf{Q}) = \dim_{\mathbf{Q}} E = 20.$ Solution. By (a), $(K : \mathbf{Q}) = (\mathbf{Q}(a) : \mathbf{Q}) = \deg(\operatorname{Irr}_{\mathbf{Q}}(a)) = 5$, and by (b) $(F : \mathbf{Q}) = (\mathbf{Q}(\zeta) : \mathbf{Q}) = \deg(\operatorname{Irr}_{\mathbf{Q}}(\zeta)) = 4$. Clearly $(E : \mathbf{Q}) = (F(a) : F)(F : \mathbf{Q}) \le 20$ as $(F(a) : F) = \deg(\operatorname{Irr}_{F}(a)) \le \deg(\operatorname{Irr}_{\mathbf{Q}}(a))$ and $(E : \mathbf{Q})$ is divisible by 4 and 5. Hence it is 20.
- (d) $\operatorname{Irr}_F(a) = t^5 2.$

Solution. Since a is a root of $t^5 - 2 \in F[t]$, $\operatorname{Irr}_F(a)$ divides $t^5 - 2$. Since $(E : \mathbf{Q}) = \dim_{\mathbf{Q}} E = 20, 20 = (E : \mathbf{Q}) = (F(a) : F)(F : \mathbf{Q}) = \deg(\operatorname{Irr}_F(a)) \cdot 4, \deg(\operatorname{Irr}_F(a)) = 5$. Therefore $\operatorname{Irr}_F(a) = t^5 - 2$.

- (e) F is a splitting field of t⁴ + t³ + t² + t + 1 over Q.
 Solution. Since the roots of p(t) = t⁴ + t³ + t² + t + 1 are ζ, ζ², ζ³, ζ⁴, all of them are in F and F is a splitting field of p(t).
- (f) K is not a normal extension of Q.

Solution. t^5-2 is irreducible over \boldsymbol{Q} by (a), and the roots of it are $a, a\zeta, a\zeta^2, a\zeta^3, a\zeta^4$. Since ζ is not a real number, $K \subset \boldsymbol{R}$ cannot contain all roots. Hence K is not a normal extension of \boldsymbol{Q} .

(g) Every element of E is algebraic over Q and E is a normal extension of Q.

Solution. Let $x \in E$. Since $(E : \mathbf{Q}) = 20, 1, x, x^2, \dots, x^{20}$ are not linearly independent. Therefore there is a nontrivial linear combination of these elements expressing 0. Hence there is a nonzero polynomial which has x as a root. Thus every element of E is algebraic. As in (f), the roots of $t^5 - 2$ are $a, a\zeta, a\zeta^2, a\zeta^3$, and $a\zeta^4$. Hence the splitting field of $t^5 - 2$ is $\mathbf{Q}(a\zeta, a\zeta^2, a\zeta^3, a\zeta^4) = \mathbf{Q}(a, \zeta) = E$. Hence E is normal over \mathbf{Q} .

- (h) Suppose π : E → C is a ring homomorphism such that π(1) = 1. Then π is injective and π(m/n) = m/n for all integers m, n with n ≠ 0.
 Solution. Since π is a ring homomorphism and π(1) = 1, π(n) = π(1)+···+π(1) = n when n is nongegative. 0 = π(0) = π(n+(-n)) = π(n)+π(-n) = n+π(-n). Hence π(-n) = -n. Moreover 1 = π(n ⋅ 1/n) = nπ(1/n) and 1/n = π(1/n). Thus π(m/n) = m/n.
- (i) Suppose $\pi : E \to \mathbf{C}$ is a ring homomorphism such that $\pi(1) = 1$. Then $\pi(E) = E$. (Hint: First show that $\pi(a)$ is a root of $t^5 - 2$ and $\pi(\zeta)$ is a root of $t^4 + t^3 + t^2 + t + 1$.) Solution. Since $a^5 - 2 = 0$, $0 = \pi(a^5 - 2) = \pi(a)^5 - \pi(2) = \pi(a)^5 - 2$ by (h). Thus $\pi(a)$ is a root of $t^5 - 2$ and $\pi(a) \in \{a, a\zeta, a\zeta^2, a\zeta^3, a\zeta^4\} \subset E$. Similarly $\pi(\zeta)$ is a root of $t^4 + t^3 + t^2 + t + 1$, $\pi(\zeta) \in \{\zeta, \zeta^2, \zeta^3, \zeta^4\} \subset E$. Since $E = \mathbf{Q}(a, \zeta), \pi(E) \subset E$. Since π is a \mathbf{Q} -isomorphism, $(E : \mathbf{Q}) = (\pi(E) : \mathbf{Q})$ and $\pi(E) = E$.
- (j) There is σ ∈ Gal(E/F) such that σ(a) = aζ.
 Solution. By (d), t⁵ 2 is irreducible over F and both a and aζ are roots of it. Hence there is an isomorphism between E = F(a) and E = F(aζ) sending a to aζ.
- (k) There is $\tau \in \text{Gal}(E/K)$ such that $\tau(\zeta) = \zeta^2$. **Solution.** Since (E : K) = 4 and $E = K(\zeta)$, $\text{Irr}_K(\zeta) = t^4 + t^3 + t^2 + t + 1$. Since both ζ and ζ^2 are roots of an irreducible polynomial $t^4 + t^3 + t^2 + t + 1$, there is an isomorphism from $E = K(\zeta)$ to $E = K(\zeta^2)$ sending ζ to ζ^2 . Note that $(\zeta^2)^3 = \zeta \in K(\zeta^2)$.
- (l) $\operatorname{Gal}(E/\mathbf{Q})$ is a non-abelian group. Solution. $\tau \circ \sigma(a) = \tau(\sigma(a)) = \tau(a\zeta) = \tau(a)\tau(\zeta) = a\zeta^2$, while $\sigma \circ \tau(a) = \sigma(a) = a\zeta$. Hence $\tau \circ \sigma \neq \sigma \circ \tau$.
- (m) Let $\pi \in \operatorname{Gal}(E/\mathbf{Q})$. Then $\pi(F) = F$ and the mapping

$$\phi : \operatorname{Gal}(E/\mathbf{Q}) \to \operatorname{Gal}(F/\mathbf{Q}) \ (\pi \mapsto \pi_{|F})$$

is a surjective group homomorphism, where $\pi_{|F}$ denotes the restriction of π to F. **Solution.** First $(F : \mathbf{Q}) = 4$ by (b) and (c) and $\pi(\tau) = \tau_{|F} \in \text{Gal}(F/\mathbf{Q})$. Note that $\tau(\zeta) = \zeta^2$ and $\tau(F) = F$ as $F = \mathbf{Q}(\zeta)$. Since $\tau^2(\zeta) = \tau(\zeta^2) = \tau(\zeta)^2 = \zeta^4$, $\tau^3(\zeta) = \tau(\zeta^4) = \tau(\zeta)^4 = \zeta^8 = \zeta^3$, $\tau^4 = \tau(\zeta^3) = \tau(\zeta)^3 = \zeta$, the order of τ is four. Therefore $\text{Gal}(F/\mathbf{Q}) = \langle \phi(\tau) \rangle$. Hence the mapping ϕ is surjective. It is clear that it is a homomorphism as well.

- (n) $\operatorname{Gal}(E/F) \triangleleft \operatorname{Gal}(E/\mathbf{Q})$ and $\operatorname{Gal}(E/\mathbf{Q})/\operatorname{Gal}(E/F) \simeq \mathbf{Z}_4$, a cyclic group of order 4. Solution. Consider the mapping ϕ above. Then $\ker(\phi) = \operatorname{Gal}(E/F) \triangleleft \operatorname{Gal}(E/\mathbf{Q})$. Hence we have the assertion by our observation in the previous problem, as π is surjective and $\operatorname{Gal}(F/\mathbf{Q}) \simeq \mathbf{Z}_4$.
- 2. Let L be a field with 27 elements. Show the following. $(5pts \times 6 = 30 pts)$

(a) Every element $x \in L$ satisfies $x^{27} = x$.

Solution. Suppose x = 0, then $x^{27} = x$. Hence assume that $x \neq 0$. Since x belongs to the multiplicative group of L of order 26, $x^{26} = 1$. Hence $x^{27} = x$ for all $x \in E$.

- (b) L contains a subfield S with three elements and x + x + x = 0 for all elements of $x \in L$. (Hint: Let 1 be the identity element of L. Consider a mapping $\pi : \mathbb{Z} \to L(n \mapsto n \cdot 1)$.) **Solution.** Let π be a homomorphism mentioned in Hint. Then it is a ring homomorphism. Since L contains finitely many elements, ker $\pi \neq 0$, and $\mathbb{Z}/\ker \pi$ is isomorphic to a subring of L which does not have any nonzero zerodivisor. Hence ker $\pi = p\mathbb{Z}$ for some prime number p. Thus $\operatorname{Im}\pi$ is a subfield S of L. Since L is a finite extension of S, $|L| = |S|^d = p^d$ for some d. Therefore, p = 3 and $x + x + x = 3x = \pi(3)x = 0$.
- (c) L contains all roots of $t^3 t + 1 = 0$ and L is normal over S. **Solution.** Let x be a root of $t^3 - t + 1$. Then $x^3 = x - 1$, $x^9 = x^3 - 1 = x + 1$, $x^{27} = x^3 + 1 = x$. Hence x is a root of $t^{27} - t$. Since $t^3 - t + 1$ is irreducible, $t^3 - t + 1$ divides $t^{27} - t$. Since all elements of E are roots of this polynomial of degree 27, $x \in E$.
- (d) Let $a \in L$ be a root of $t^3 t + 1 = 0$. Find the order of a, i.e., $\min\{n \in \mathbb{N} \mid a^n = 1\}$. Solution. The order of a is a divisor of 26 as in (c). Suppose it is not 26. Then it is either 2 or 13. Clearly it is not 2. Since $a^9 = a + 1$ and $a^3 = a - 1$, $a^{13} = (a^2 - 1)a = a^3 - a = -1 \neq 1$. Therefore, the order is 26.
- (e) Let σ : L → L (x ↦ x³). Then σ is an automorphism of L.
 Solution. Since x + x + x = 0 for all x ∈ L, (x + y)³ = x³ + y³ and (xy)³ = x³y³. Thus it is a homomorphism. Since x³ = 0 implies x = 0, σ is injective. Since |L| is finite, it is injective as well. Therefore, σ is an automorphism of L.
- (f) $\operatorname{Gal}(L/S) = \{id_L, \sigma, \sigma^2\}.$

Solution. As we have seen in (a), $x^{27} = x$ for all $x \in L$, $\sigma^3(x) = x^{27} = x$ and the order of σ is three. Since (L:S) = 3, we have $\operatorname{Gal}(L/S) = \{id_L, \sigma, \sigma^2\}$.

Hiroshi Suzuki, International Christian University