Algebra III Final AY2007/8

1. Let $a=\sqrt[5]{2}, \zeta=e^{2 \pi \sqrt{-1} / 5} \in \boldsymbol{C}, E=\boldsymbol{Q}(a, \zeta), F=\boldsymbol{Q}(\zeta)$ and $K=\boldsymbol{Q}(a)$. Show the following.
($5 \mathrm{pts} \times 14=70 \mathrm{pts})$
(a) $\operatorname{Irr}_{\boldsymbol{Q}}(a)=t^{5}-2$.
(b) $\operatorname{Irr}_{\boldsymbol{Q}}(\zeta)=t^{4}+t^{3}+t^{2}+t+1$.
(c) $(E: \boldsymbol{Q})=\operatorname{dim}_{\boldsymbol{Q}} E=20$.
(d) $\operatorname{Irr}_{F}(a)=t^{5}-2$.
(e) F is a splitting field of $t^{4}+t^{3}+t^{2}+t+1$ over \boldsymbol{Q}.
(f) K is not a normal extension of \boldsymbol{Q}.
(g) Every element of E is algebraic over \boldsymbol{Q} and E is a normal extension of \boldsymbol{Q}.
(h) Suppose $\pi: E \rightarrow \boldsymbol{C}$ is a ring homomorphism such that $\pi(1)=1$. Then π is injective and $\pi(m / n)=m / n$ for all integers m, n with $n \neq 0$.
(i) Suppose $\pi: E \rightarrow \boldsymbol{C}$ is a ring homomorphism such that $\pi(1)=1$. Then $\pi(E)=E$. (Hint: First show that $\pi(a)$ is a root of $t^{5}-2$ and $\pi(\zeta)$ is a root of $t^{4}+t^{3}+t^{2}+t+1$.)
(j) There is $\sigma \in \operatorname{Gal}(E / F)$ such that $\sigma(a)=a \zeta$.
(k) There is $\tau \in \operatorname{Gal}(E / K)$ such that $\tau(\zeta)=\zeta^{2}$.
(l) $\operatorname{Gal}(E / \boldsymbol{Q})$ is a non-abelian group.
(m) Let $\pi \in \operatorname{Gal}(E / \boldsymbol{Q})$. Then $\pi(F)=F$ and the mapping

$$
\phi: \operatorname{Gal}(E / \boldsymbol{Q}) \rightarrow \operatorname{Gal}(F / \boldsymbol{Q})\left(\pi \mapsto \pi_{\mid F}\right)
$$

is a surjective group homomorphism, where $\pi_{\mid F}$ denotes the restriction of π to F.
(n) $\operatorname{Gal}(E / F) \triangleleft \operatorname{Gal}(E / \boldsymbol{Q})$ and $\operatorname{Gal}(E / \boldsymbol{Q}) / \operatorname{Gal}(E / F) \simeq \boldsymbol{Z}_{4}$, a cyclic group of order 4 .
2. Let L be a field with 27 elements. Show the following.
(a) Every element $x \in L$ satisfies $x^{27}=x$.
(b) L contains a subfield S with three elements and $x+x+x=0$ for all elements of $x \in L$.
(Hint: Let 1 be the identity element of L. Consider a mapping $\pi: \boldsymbol{Z} \rightarrow L(n \mapsto n \cdot 1)$.)
(c) L contains all roots of $t^{3}-t+1=0$ and L is normal over S.
(d) Let $a \in L$ be a root of $t^{3}-t+1=0$. Find the order of a, i.e., $\min \left\{n \in N \mid a^{n}=1\right\}$.
(e) Let $\sigma: L \rightarrow L\left(x \mapsto x^{3}\right)$. Then σ is an automorphism of L.
(f) $\operatorname{Gal}(L / S)=\left\{i d_{L}, \sigma, \sigma^{2}\right\}$.

Solutions to Algebra III Final AY2007/8

1. Let $a=\sqrt[5]{2}, \zeta=e^{2 \pi \sqrt{-1} / 5} \in \boldsymbol{C}, E=\boldsymbol{Q}(a, \zeta), F=\boldsymbol{Q}(\zeta)$ and $K=\boldsymbol{Q}(a)$. Show the following.
$(5 \mathrm{pts} \times 14=70 \mathrm{pts})$
(a) $\operatorname{Irr}_{\boldsymbol{Q}}(a)=t^{5}-2$.

Solution. Since $t^{5}-2$ is irreducible over \boldsymbol{Q} by Eisenstein's criterion and Gauss' lemma, and a is a root of it, we have $\operatorname{Irr}_{\boldsymbol{Q}}(a)=t^{5}-2$.
(b) $\operatorname{Irr}_{\boldsymbol{Q}}(\zeta)=t^{4}+t^{3}+t^{2}+t+1$.

Solution. Since $\zeta^{5}=1$ and $\zeta \neq 1, \zeta$ is a root of $p(t)=t^{4}+t^{3}+t^{2}+t+1$. Since $p(t+1)=t^{4}+5 t^{3}+10 t^{2}+10 t+5$, this is irreducible over \boldsymbol{Q} by Eisenstein's criterion and Gauss' lemma. Hence $p(t)$ itself is irreducible. Therefore $\operatorname{Irr}_{\boldsymbol{Q}}(\zeta)=t^{4}+t^{3}+t^{2}+t+1$.
(c) $(E: \boldsymbol{Q})=\operatorname{dim}_{\boldsymbol{Q}} E=20$.

Solution. By (a), $(K: \boldsymbol{Q})=(\boldsymbol{Q}(a): \boldsymbol{Q})=\operatorname{deg}\left(\operatorname{Irr} \boldsymbol{Q}^{(a)}\right)=5$, and by (b) $(F:$ $\boldsymbol{Q})=(\boldsymbol{Q}(\zeta): \boldsymbol{Q})=\operatorname{deg}(\operatorname{Irr} \boldsymbol{Q}(\zeta))=4$. Clearly $(E: \boldsymbol{Q})=(F(a): F)(F: \boldsymbol{Q}) \leq 20$ as $(F(a): F)=\operatorname{deg}\left(\operatorname{Irr}_{F}(a)\right) \leq \operatorname{deg}\left(\operatorname{Irr}_{\boldsymbol{Q}}{ }^{(a)}\right)$ and $(E: \boldsymbol{Q})$ is divisible by 4 and 5 . Hence it is 20 .
(d) $\operatorname{Irr}_{F}(a)=t^{5}-2$.

Solution. Since a is a root of $t^{5}-2 \in F[t], \operatorname{Irr}_{F}(a)$ divides $t^{5}-2$. Since $(E: \boldsymbol{Q})=$ $\operatorname{dim}_{\boldsymbol{Q}} E=20,20=(E: \boldsymbol{Q})=(F(a): F)(F: \boldsymbol{Q})=\operatorname{deg}\left(\operatorname{Irr}_{F}(a)\right) \cdot 4, \operatorname{deg}\left(\operatorname{Irr}_{F}(a)\right)=5$. Therefore $\operatorname{Irr}_{F}(a)=t^{5}-2$.
(e) F is a splitting field of $t^{4}+t^{3}+t^{2}+t+1$ over \boldsymbol{Q}.

Solution. Since the roots of $p(t)=t^{4}+t^{3}+t^{2}+t+1$ are $\zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}$, all of them are in F and F is a splitting field of $p(t)$.
(f) K is not a normal extension of \boldsymbol{Q}.

Solution. $\quad t^{5}-2$ is irreducible over \boldsymbol{Q} by (a), and the roots of it are $a, a \zeta, a \zeta^{2}, a \zeta^{3}, a \zeta^{4}$. Since ζ is not a real number, $K \subset \boldsymbol{R}$ cannot contain all roots. Hence K is not a normal extension of \boldsymbol{Q}.
(g) Every element of E is algebraic over \boldsymbol{Q} and E is a normal extension of \boldsymbol{Q}.

Solution. Let $x \in E$. Since $(E: \boldsymbol{Q})=20,1, x, x^{2}, \ldots, x^{20}$ are not linearly independent. Therefore there is a nontrivial linear combination of these elements expressing 0 . Hence there is a nonzero polynomial which has x as a root. Thus every element of E is algebraic. As in (f), the roots of $t^{5}-2$ are $a, a \zeta, a \zeta^{2}, a \zeta^{3}$, and $a \zeta^{4}$. Hence the splitting field of $t^{5}-2$ is $\boldsymbol{Q}\left(a \zeta, a \zeta^{2}, a \zeta^{3}, a \zeta^{4}\right)=\boldsymbol{Q}(a, \zeta)=E$. Hence E is normal over \boldsymbol{Q}.
(h) Suppose $\pi: E \rightarrow \boldsymbol{C}$ is a ring homomorphism such that $\pi(1)=1$. Then π is injective and $\pi(m / n)=m / n$ for all integers m, n with $n \neq 0$.
Solution. Since π is a ring homomorphism and $\pi(1)=1, \pi(n)=\pi(1)+\cdots+\pi(1)=$ n when n is nongegative. $0=\pi(0)=\pi(n+(-n))=\pi(n)+\pi(-n)=n+\pi(-n)$. Hence $\pi(-n)=-n$. Morevover $1=\pi\left(n \cdot \frac{1}{n}\right)=n \pi\left(\frac{1}{n}\right)$ and $\frac{1}{n}=\pi\left(\frac{1}{n}\right)$. Thus $\pi(m / n)=m / n$.
(i) Suppose $\pi: E \rightarrow \boldsymbol{C}$ is a ring homomorphism such that $\pi(1)=1$. Then $\pi(E)=E$. (Hint: First show that $\pi(a)$ is a root of $t^{5}-2$ and $\pi(\zeta)$ is a root of $t^{4}+t^{3}+t^{2}+t+1$.)
Solution. Since $a^{5}-2=0,0=\pi\left(a^{5}-2\right)=\pi(a)^{5}-\pi(2)=\pi(a)^{5}-2$ by (h). Thus $\pi(a)$ is a root of $t^{5}-2$ and $\pi(a) \in\left\{a, a \zeta, a \zeta^{2}, a \zeta^{3}, a \zeta^{4}\right\} \subset E$. Similarly $\pi(\zeta)$ is a root of $t^{4}+t^{3}+t^{2}+t+1, \pi(\zeta) \in\left\{\zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}\right\} \subset E$. Since $E=\boldsymbol{Q}(a, \zeta), \pi(E) \subset E$. Since π is a \boldsymbol{Q}-isomorphism, $(E: \boldsymbol{Q})=(\pi(E): \boldsymbol{Q})$ and $\pi(E)=E$.
(j) There is $\sigma \in \operatorname{Gal}(E / F)$ such that $\sigma(a)=a \zeta$.

Solution. By (d), $t^{5}-2$ is irreducible over F and both a and $a \zeta$ are roots of it. Hence there is an isomorphism between $E=F(a)$ and $E=F(a \zeta)$ sending a to $a \zeta$.
(k) There is $\tau \in \operatorname{Gal}(E / K)$ such that $\tau(\zeta)=\zeta^{2}$.

Solution. Since $(E: K)=4$ and $E=K(\zeta), \operatorname{Irr}_{K}(\zeta)=t^{4}+t^{3}+t^{2}+t+1$. Since both ζ and ζ^{2} are roots of an irreducible polynomial $t^{4}+t^{3}+t^{2}+t+1$, there is an isomorphism from $E=K(\zeta)$ to $E=K\left(\zeta^{2}\right)$ sending ζ to ζ^{2}. Note that $\left(\zeta^{2}\right)^{3}=\zeta \in K\left(\zeta^{2}\right)$.
(1) $\operatorname{Gal}(E / \boldsymbol{Q})$ is a non-abelian group.

Solution. $\quad \tau \circ \sigma(a)=\tau(\sigma(a))=\tau(a \zeta)=\tau(a) \tau(\zeta)=a \zeta^{2}$, while $\sigma \circ \tau(a)=\sigma(a)=a \zeta$.
Hence $\tau \circ \sigma \neq \sigma \circ \tau$.
(m) Let $\pi \in \operatorname{Gal}(E / Q)$. Then $\pi(F)=F$ and the mapping

$$
\phi: \operatorname{Gal}(E / \boldsymbol{Q}) \rightarrow \operatorname{Gal}(F / \boldsymbol{Q})\left(\pi \mapsto \pi_{\mid F}\right)
$$

is a surjective group homomorphism, where $\pi_{\mid F}$ denotes the restriction of π to F.
Solution. First $(F: \boldsymbol{Q})=4$ by (b) and (c) and $\pi(\tau)=\tau_{\mid F} \in \operatorname{Gal}(F / \boldsymbol{Q})$. Note that $\tau(\zeta)=\zeta^{2}$ and $\tau(F)=F$ as $F=\boldsymbol{Q}(\zeta)$. Since $\tau^{2}(\zeta)=\tau\left(\zeta^{2}\right)=\tau(\zeta)^{2}=\zeta^{4}$, $\tau^{3}(\zeta)=\tau\left(\zeta^{4}\right)=\tau(\zeta)^{4}=\zeta^{8}=\zeta^{3}, \tau^{4}=\tau\left(\zeta^{3}\right)=\tau(\zeta)^{3}=\zeta$, the order of τ is four. Therefore $\operatorname{Gal}(F / \boldsymbol{Q})=\langle\phi(\tau)\rangle$. Hence the mapping ϕ is surjective. It is clear that it is a homomorphism as well.
(n) $\operatorname{Gal}(E / F) \triangleleft \operatorname{Gal}(E / \boldsymbol{Q})$ and $\operatorname{Gal}(E / \boldsymbol{Q}) / \operatorname{Gal}(E / F) \simeq \boldsymbol{Z}_{4}$, a cyclic group of order 4 .

Solution. Consider the mapping ϕ above. Then $\operatorname{ker}(\phi)=\operatorname{Gal}(E / F) \triangleleft \operatorname{Gal}(E / \boldsymbol{Q})$. Hence we have the assertion by our observation in the previous problem, as π is surjective and $\operatorname{Gal}(F / Q) \simeq Z_{4}$.
2. Let L be a field with 27 elements. Show the following.
(5pts $\times 6=30 \mathrm{pts})$
(a) Every element $x \in L$ satisfies $x^{27}=x$.

Solution. Suppose $x=0$, then $x^{27}=x$. Hence assume that $x \neq 0$. Since x belongs to the multiplicative group of L of order $26, x^{26}=1$. Hence $x^{27}=x$ for all $x \in E$.
(b) L contains a subfield S with three elements and $x+x+x=0$ for all elements of $x \in L$. (Hint: Let 1 be the identity element of L. Consider a mapping $\pi: \boldsymbol{Z} \rightarrow L(n \mapsto n \cdot 1)$.) Solution. Let π be a homomorphism mentioned in Hint. Then it is a ring homomorphism. Since L contains finitely many elements, $\operatorname{ker} \pi \neq 0$, and $\boldsymbol{Z} / \operatorname{ker} \pi$ is isomorphic to a subring of L which does not have any nonzero zerodivisor. Hence ker $\pi=p \boldsymbol{Z}$ for some prime number p. Thus $\operatorname{Im} \pi$ is a subfield S of L. Since L is a finite extension of $S,|L|=|S|^{d}=p^{d}$ for some d. Therefore, $p=3$ and $x+x+x=3 x=\pi(3) x=0$.
(c) L contains all roots of $t^{3}-t+1=0$ and L is normal over S.

Solution. Let x be a root of $t^{3}-t+1$. Then $x^{3}=x-1, x^{9}=x^{3}-1=x+1$, $x^{27}=x^{3}+1=x$. Hence x is a root of $t^{27}-t$. Since $t^{3}-t+1$ is irreducible, $t^{3}-t+1$ divides $t^{27}-t$. Since all elements of E are roots of this polynomial of degree 27 , $x \in E$.
(d) Let $a \in L$ be a root of $t^{3}-t+1=0$. Find the order of a, i.e., $\min \left\{n \in \boldsymbol{N} \mid a^{n}=1\right\}$. Solution. The order of a is a divisor of 26 as in (c). Suppose it is not 26. Then it is either 2 or 13 . Clearly it is not 2 . Since $a^{9}=a+1$ and $a^{3}=a-1, a^{13}=\left(a^{2}-1\right) a=$ $a^{3}-a=-1 \neq 1$. Therefore, the order is 26 .
(e) Let $\sigma: L \rightarrow L\left(x \mapsto x^{3}\right)$. Then σ is an automorphism of L.

Solution. \quad Since $x+x+x=0$ for all $x \in L,(x+y)^{3}=x^{3}+y^{3}$ and $(x y)^{3}=x^{3} y^{3}$. Thus it is a homomorphism. Since $x^{3}=0$ implies $x=0, \sigma$ is injective. Since $|L|$ is finite, it is injective as well. Therefore, σ is an automorphism of L.
(f) $\operatorname{Gal}(L / S)=\left\{i d_{L}, \sigma, \sigma^{2}\right\}$.

Solution. As we have seen in (a), $x^{27}=x$ for all $x \in L, \sigma^{3}(x)=x^{27}=x$ and the order of σ is three. Since $(L: S)=3$, we have $\operatorname{Gal}(L / S)=\left\{i d_{L}, \sigma, \sigma^{2}\right\}$.

