
Quiz 1 Due: 10:10 a.m. April 21, 2008

Division: ID#: Name:

Let π =

(
1 2 3 4 5 6 7 8
1 4 5 2 6 7 8 3

)
, σ =

(
1 2 3 4 5 6 7 8
4 1 5 8 3 7 6 2

)
.

1. Compute πσπ−1.

2. Express each of σ and πσπ−1 as a product of disjoint cycles. (Do you recognize
some similarity between σ and πσπ−1?)

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a
shortest?)

4. Express each of π and σ as a product of adjacent transpositions (1, 2), (2, 3), . . . , (7, 8).
(Is it a shortest?)

5. Determine sign(π) and sign(σ).

Message: What do you expect from this course? Any requests?



Solutions to Quiz 1 April 21, 2008

Let π =

(
1 2 3 4 5 6 7 8
1 4 5 2 6 7 8 3

)
, σ =

(
1 2 3 4 5 6 7 8
4 1 5 8 3 7 6 2

)
.

1. Compute πσπ−1.

Sol.

πσπ−1

=

(
1 2 3 4 5 6 7 8
1 4 5 2 6 7 8 3

)(
1 2 3 4 5 6 7 8
4 1 5 8 3 7 6 2

)(
1 4 5 2 6 7 8 3
1 2 3 4 5 6 7 8

)
=

(
1 2 3 4 5 6 7 8
2 3 4 1 6 5 8 7

)
.

2. Express each of σ and πσπ−1 as a product of disjoint cycles. (Do you recognize
some similarity between σ and πσπ−1?)

Sol.

σ = (1, 4, 8, 2)(3, 5)(6, 7),

πσπ−1 = (1, 2, 3, 4)(5, 6)(7, 8)

( = (π(1), π(4), π(8), π(2))(π(3), π(5))(π(6), π(7)).

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a
shortest?)

Sol.

π = (2, 4)(3, 8)(3, 7)(3, 6)(3, 5) (= (2, 4)(3, 5)(5, 6)(6, 7)(7, 8)),

σ = (1, 2)(1, 8)(1, 4)(3, 5)(6, 7) (= (1, 4)(4, 8)(8, 2)(3, 5)(6, 7)).

Use the formula in Corollary 3.1.4. Both of these are shortest.

4. Express each of π and σ as a product of adjacent transpositions (1, 2), (2, 3), . . . , (7, 8).
(Is it a shortest?)

Sol.

π = (3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(2, 3)(3, 4)

σ = (7, 8)(6, 7)(3, 4)(4, 5)(5, 6)(2, 3)(3, 4)(4, 5)(5, 6)(7, 8)(6, 7)(7, 8)(1, 2)

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The
minimal number of adjacent transpositions required to express each permutation
equals the number ℓ of the permutation to be calculated in the next problem. Can
you prove this fact?

5. Determine sign(π) and sign(σ).

Sol. Since ℓ(π) = 7, sign(π) = (−1)7 = −1. Similarly since ℓ(σ) = (−1)13,
sign(π) = (−1)13 = −1. Since π is the product of 3 cycles including one 1 cycle,
sign(π) = (−1)8−3 = −1 by Cauchy’s Formula in (3.1.9). Similarly σ is the product
of 3 cycles, sign(σ) = (−1)8−3 = −1.



Quiz 2 Due: 10:10 a.m. April 28, 2008

Division: ID#: Name:

1. Let R be the set of real numbers, and G = R \ {−1} = {x | (x ∈ R) ∧ (x ̸= −1)}.
For x, y ∈ G, let x ∗ y = xy + x + y. Show that (G, ∗) is a group. Do not forget to
check that ∗ defines a binary operation on G.

2. Let (G, ◦) is a group with the identity element e. Suppose that x ◦ x = e for all
x ∈ G. Show that (G, ◦) is an abelian group, i.e., x ◦ y = y ◦ x for all x, y ∈ G.

Message: Any questions, comments or requests?
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1. Let R be the set of real numbers, and G = R \ {−1} = {x | (x ∈ R) ∧ (x ̸= −1)}.
For x, y ∈ G, let x ∗ y = xy + x + y. Show that (G, ∗) is a group. Do not forget to
check that ∗ defines a binary operation on G.

Sol. Note that x ∗ y = (x + 1)(y + 1) − 1.

Clearly x∗y ∈ R. Suppose −1 = x∗y = (x+1)(y+1)−1. Then (x+1)(y+1) = 0.
Since x ̸= −1 and y ̸= −1, this is absurd. Hence x ∗ y ∈ G for all x, y ∈ G.

Let x, y, z ∈ G. Then

(x∗y)∗z = ((x+1)(y+1)−1)∗z = (x+1)(y+1)(z+1)−1 = x∗((y+1)(z+1)−1) = x∗(y∗z).

Since x ∗ 0 = (x + 1) − 1 = x = 0 ∗ x, 0 plays as the identity element in G. Let
x ∈ G. Then

x ∗
(

1

x + 1
− 1

)
= (x + 1)

1

x + 1
− 1 = 0 =

1

x + 1
(x + 1) − 1 =

(
1

x + 1
− 1

)
∗ x.

Hence x has its inverse. Note that as x ̸= −1, 1
x+1

− 1 ∈ G. Therefore (G, ∗) is a
group.

2. Let (G, ◦) is a group with the identity element e. Suppose that x ◦ x = e for all
x ∈ G. Show that (G, ◦) is an abelian group, i.e., x ◦ y = y ◦ x for all x, y ∈ G.

Sol. By applications of the general associativity law, we omit parentheses. Let
x, y ∈ G. Since x ◦ y ∈ G, x ◦ y ◦ x ◦ y = e, and x ◦ x = y ◦ y = e. Hence

y ◦x = y ◦x◦ e = y ◦x◦x◦ y ◦x◦ y = y ◦ e◦ y ◦x◦ y = y ◦ y ◦x◦ y = e◦x◦ y = x◦ y.

Therefore, (G, ◦) is an abelian group.



Quiz 3 Due: 10:10 a.m. May 7, 2008

Division: ID#: Name:

Let Z18 = {[0], [1], . . . , [17]} be a group with addition as its binary operation, and
Z∗

18 be a group with multiplication as its binary operation. Recall that Z∗
18 is the set of

invertible elements in Z18 with respect to multiplication.

1. Find all elements in 〈[3]〉, i.e., the subgroup generated by [3], and the order of [3] in
Z18.

2. Find all elements [a] ∈ Z18 such that 〈[3]〉 = 〈[a]〉.

3. Find all elements in Z∗
18.

4. Show that [a]6 = [1] for all [a] ∈ Z∗
18.

5. Determine whether or not Z∗
18 is a cyclic group.

Message: Any requests or questions?



Solutions to Quiz 3 May 7, 2008

Let Z18 = {[0], [1], . . . , [17]} be a group with addition as its binary operation, and
Z∗

18 be a group with multiplication as its binary operation. Recall that Z∗
18 is the set of

invertible elements in Z18 with respect to multiplication.

1. Find all elements in 〈[3]〉, i.e., the subgroup generated by [3], and the order of [3] in
Z18.

Sol. Since [3] + [3] = [6], [3] + [3] + [3] = [6] + [3] = [9], [3] + [3] + [3] + [3] = [12]
and [3] + [3] + [3] + [3] + [3] + [3] = [0], we have the following by Proposition 3.4
(3.3.6).

〈[3]〉 = {[0], [3], [6], [9], [12], [15]}

and hence the order of [3], denoted by |[3]| = |〈[3]〉| = 6.

(Note that when the operation is addition, we customarily denote [3] + [3] = 2[3],
[3] + [3] + [3] = 3[3] instead of using power notation.)

2. Find all elements [a] ∈ Z18 such that 〈[3]〉 = 〈[a]〉.
Sol. If the condition is satisfied, [a] ∈ 〈[3]〉 = {[0], [3], [6], [9], [12], [15]}. Check one
by one we find [a] = [3], or [15].

(Note that if [a] = m[3], then the greatest common divisor of m and 6 has to be 1
and we have m = 1 or 5 if 0 ≤ m ≤ 5. See (4.1.7), (4.1.8).)

3. Find all elements in Z∗
18.

Sol. If [a][b] = [ab] = [1] in Z18, there exists an integer m such that ab−1 = 18m.
Hence ab − 18m = 1. If d is a common divisor of a and 18, then it must divide 1.
Hence if [a] is invertible in Z18 with respect to multiplication, a is coprime to 18.
Conversely if a is coprime to 18, there are integers x and y satisfying ax + 18y = 1.
Then [a][x] = [ax] = [1 − 18y] = [1] and [a] is invertible. Therefore

Z∗
18 = {[1], [5], [7], [11], [13], [17]}.

Therefore |Z∗
18| = 6.

4. Show that [a]6 = [1] for all [a] ∈ Z∗
18.

Sol. [5]2 = [5][5] = [25] = [7], [5]3 = [5][5][5] = [7][5] = [35] = [17] = [−1],
[5]4 = [5][5][5][5] = [−1][5] = [−5] = [13], [5]5 = [5][5][5][5][5] = [−7] = [11],
[5]6 = [5][5][5][5][5][5] = [1]. Hence all elements of Z∗18 appear as a power of [5]
and [5]6 = [1]. Thus [a] = [5]i for some i and [a]6 = ([5]i)6 = ([5]6)i = [1]. This
proves the assertion.

5. Determine whether or not Z∗
18 is a cyclic group.

Sol. By the previous problem, we have shown that

Z∗
18 = {[5]n | n ∈ Z} = 〈[5]〉.

Thus Z∗
18 is a cyclic group.



Quiz 4 Due: 10:10 a.m. May 14, 2008

Division: ID#: Name:

1. Let G be a group and H a nonempty subset of G. Show that if H−1H ⊆ H, then
H ≤ G.

2. Let H be a subgroup of a group G, and a, b ∈ G. Show the following.

(a) H = H−1.

(b) H−1H = H.

(c) If a−1b ∈ H, then aH = bH.

(d) If aH = bH, then a−1b ∈ H.

Message: Any questions or requests?



Solutions to Quiz 4 May 14, 2008

1. Let G be a group and H a nonempty subset of G. Show that if H−1H ⊆ H, then
H ≤ G.

Sol. (Since H is nonempty, it suffices to show that xy ∈ H and x−1 ∈ H for all
x, y ∈ H.)

Since H is nonempty, there is an element x ∈ H. Hence 1 = x−1x ∈ H−1H ⊆ H.
Thus x−1 = x−11 ∈ H−1H ⊆ H. Let x, y ∈ H. Since x−1 ∈ H, xy = (x−1)−1y ∈
H−1H ⊆ H. Therefore xy ∈ H and x−1 ∈ H for all x, y ∈ H.

2. Let H be a subgroup of a group G, and a, b ∈ G. Show the following.

(a) H = H−1.

Sol. Since H is a subgroup, H−1 ⊆ H. Let h ∈ H. Since H is a subgroup of
G, h−1 ∈ H. Therefore h = (h−1)−1 ∈ H−1 and H ⊆ H−1. Thus H = H−1.

(b) H−1H = H.

Sol. Let x, y ∈ H. Since H is a subgroup of G, x−1 ∈ H and x−1y ∈ H.
Hence H−1H ⊆ H. Since H is a subgroup of G, 1 ∈ H. Therefore h = 1−1h ∈
H−1H and H ⊆ H−1H. Thus H−1H = H.

(c) If a−1b ∈ H, then aH = bH.

Sol.

aH = bb−1aH = b(a−1b)−1H ⊆ bH−1H = bH ⊆ aa−1bH ⊆ aHH ⊆ aH.

Hence aH = bH.

(d) If aH = bH, then a−1b ∈ H.

Sol.
a−1b = a−1b1 ∈ a−1bH = a−1aH = H.

Therefore a−1b ∈ H.



Quiz 5 Due: 10:10 a.m. May 21, 2008

Division: ID#: Name:

Let G = S4, the symmetric group of degree 4, V = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},
K = {1, (1, 2)(3, 4)}, and H = 〈(1, 2), (1, 3)〉. Show the following.

1. K ¢ V , i.e., K is a normal subgroup of V .

2. V ¢ G, i.e., V is a normal subgroup of G.

3. K is not a normal subgroup of G.

4. G/V is not an abelian group.

5. G = V H and V ∩ H = 1.

Message: Any questions or requests?



Solutions to Quiz 5 May 21, 2008

Let G = S4, the symmetric group of degree 4, V = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},
K = {1, (1, 2)(3, 4)}, and H = 〈(1, 2), (1, 3)〉. Show the following.

1. K ¢ V , i.e., K is a normal subgroup of V .

Sol. Let σ ∈ V . Then clearly σ2 = 1. σ−1 = σ.

(1, 2)(3, 4)(1, 3)(2, 4) = (1, 4)(2, 3) = (1, 3)(2, 4)(1, 2)(3, 4),

(1, 2)(3, 4)(1, 4)(2, 3) = (1, 3)(2, 4) = (1, 4)(2, 3)(1, 2)(3, 4),

(1, 3)(2, 4)(1, 4)(2, 3) = (1, 2)(3, 4) = (1, 4)(2, 3)(1, 3)(2, 4).

Hence V ≤ G, and V is abelian. Since K = 〈(1, 2)(3, 4)〉, K is a subgroup of V .
Since V is abelian, K is a normal subgroup of V .

2. V ¢ G, i.e., V is a normal subgroup of G.

Sol. First note that V contains all permutations of type (a, b)(c, d) in S4. Let
σ ∈ S4. Then

σ(a, b)(c, d)σ−1 = (σ(a), σ(b))(σ(c), σ(d)).

Hence σπσ−1 ∈ V for all 1 ̸= π ∈ V . It is clear that σ1σ−1 = 1 ∈ V , and V is a
normal subgroup of G.

3. K is not a normal subgroup of G.

Sol. Since (1, 3)(1, 2)(3, 4)(1, 3) = (2, 3)(1, 4) ̸∈ K, K is not normal in G.

4. G/V is not an abelian group.

Sol. (1, 2)(2, 3)(1, 2)(2, 3) = (1, 2, 3)(1, 2, 3) = (1, 3, 2) ̸∈ V . Hence G′ ̸≤ V and
G/V is not abelian.

By our computation above,

((1, 2)V )((2, 3)V )((1, 2)V )−1((2, 3)V )−1 = (1, 3, 2)V ̸= V

Hence ((1, 2)V )((2, 3)V ) ̸= ((2, 3)V )((1, 2)V ).

5. G = V H and V ∩ H = 1.

Sol. Since H = {1, (1, 2), (2, 3), (1, 3), (1, 2, 3), (1, 3, 2)}, V ∩ H = 1 part is clear.
Since

|V H| = |V ||H|/|V ∩ H| = 24 = |G|.

Therefore V H = G.

Let x, y ∈ H. If V x = V y, then yx−1 ∈ V ∩ H = 1. Hence distinct elements in H
belong to distinct cosets in G/V . Hence |V H| = |V ||H| = 24. Therefore G = V H
as V H ⊆ G.



Quiz 6 Due: 10:00 a.m. May 28, 2008

Division: ID#: Name:

Let m and n be positive integers. Let π be an assignment from Zn to Zm defined by
[a]n 7→ [a]m.

1. Show that if π is a mapping from Zn to Zm, then m | n, i.e., there exists ℓ ∈ Z
such that n = ℓm.

2. Suppose ℓ | n and m | n. Then a mapping α : Zn → Zℓ × Zm ([a]n 7→ ([a]ℓ, [a]m) is
a homomorphism.

3. Show that the mapping α above is injective if and only if the least common multiple
of ℓ and m is n.

4. Show that the mapping α above is surjective if and only if the greatest common
divisor of ℓ and m is 1.

5. Show that if n = ℓm, and ℓ and m are coprime integers., i.e., gcd(ℓ,m) = 1, then
Zn ≅ Zℓ × Zm.

Message: Any questions or requests?
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Let m and n be positive integers. Let π be an assignment from Zn to Zm defined by
[a]n 7→ [a]m.

1. Show that if π is a mapping from Zn to Zm, then m | n, i.e., there exists ℓ ∈ Z
such that n = ℓm.

Sol. Suppose π is a mapping. Since [n]n = [0]n, [n]m = [0]m. Hence m | n.

Conversely suppose m | n. If [a]n = [b]n, then n | a − b. Since m | n, m | a − b and
[a]m = [b]m. Therefore π is a well-defined mapping.

2. Suppose ℓ | n and m | n. Then a mapping α : Zn → Zℓ × Zm ([a]n 7→ ([a]ℓ, [a]m) is
a homomorphism.

Sol. By 1, the assignments [a]n 7→ [a]ℓ and [a]n 7→ [a]m are mappings. Hence α is
a well-defined mapping. Now

α([a]n + [b]n) = α([a + b]n) = ([a + b]ℓ, [a + b]m) = ([a]ℓ + [b]ℓ, [a]m + [b]m)

= ([a]ℓ, [a]m) + ([b]ℓ, [b]m) = α([a]n) + α([b]n).

Hence α is a homomorphism.

3. Show that the mapping α above is injective if and only if the least common multiple
of ℓ and m is n.

Sol. Suppose α is injective. Then α([a]n) = ([a]ℓ, [a]m) = ([0]ℓ, [0]m) implies [a]n =
[0]. Hence m | a and ℓ | a implies n | a. By assumption n is a common multiple of
ℓ and m. Let a be a common multiple of ℓ and m. Then clearly ℓ | a and m | a.
Hence n | a. Thus n is the least common multiple of ℓ and m.

Suppose n is the least common multiple of ℓ and m. If a is a common multiple
of ℓ and m, then n | a. Hence we have α([a]n) = ([a]ℓ, [a]m) = ([0]ℓ, [0]m) implies
[a]n = [0]n, and α is injective.

4. Show that the mapping α above is surjective if and only if the greatest common
divisor of ℓ and m is 1.

Sol. Suppose α is surjective. Then there exists [a]n such that [a]ℓ = [1]ℓ and
[a]m = [0]m. Hence there are integers s and t such that a = ms = ℓt + 1. Hence
ms − ℓt = 1. If d is the greatest common divisor of ℓ and m, then d divides
ms − ℓt = 1. Hence d = 1.

Conversely if ℓ and m are coprime each other, there are integers s and t such
that sℓ + tm = 1. (To prove this fact consider 〈ℓ,m〉 in Z. Since Z is cyclic
and every subgroup of a cyclic group is cyclic, there exists a nonnegative integer
d such that 〈ℓ,m〉 = 〈d〉. Since ℓ,m ∈ 〈ℓ,m〉, d | ℓ and d | m. Hence d = 1.
Since d ∈ 〈ℓ,m〉, there exist integers s, t such that 1 = sℓ + tm.) Now let x and
y are arbitrary integers. Then [xtm + ysℓ]ℓ = [xtm]ℓ = [x(1 − sℓ)]ℓ = [x]ℓ, and
[xtm + ysℓ]m = [ysℓ]m = [y(1 − tm)]m = [y]m and α is surjective.

5. Show that if n = ℓm, and ℓ and m are coprime integers., i.e., gcd(ℓ,m) = 1, then
Zn ≅ Zℓ × Zm.

Sol. By 3 and 4, the mapping α above is an isomorphism. Hence we have Zn ≅
Zℓ × Zm.



Quiz 7 Due: 10:10 a.m. June 4, 2008

Division: ID#: Name:

Let G be a finite group of order pn, where p is a prime number, and X a non-empty
finite set. Let α : G × X → X ((g, x) 7→ g · x) be a left action of G on X. For x, y ∈ X
we write x ∼ y if there is an element g ∈ G such that y = g · x. Let CX(G) = {x ∈ X |
g · x = x for all g ∈ G}.

1. Show that the relation ∼ on X is an equivalence relation.

2. For x ∈ X let [x] denote the equivalence class with respect to ∼ containing x. (This
is called an orbit and denoted by G · x.) Show that x ∈ CX(G) ⇔ |[x]| = 1.

3. Show that |[x]| is a power of p for all x ∈ X. (Hint: (5.2.1) or Proposition 7.3 in
the lecture.)

4. Show that |X| ≡ |CX(G)| (mod p).

Message: Any questions or requests?
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Let G be a finite group of order pn, where p is a prime number, and X a non-empty
finite set. Let α : G × X → X ((g, x) 7→ g · x) be a left action of G on X. For x, y ∈ X
we write x ∼ y if there is an element g ∈ G such that y = g · x. Let CX(G) = {x ∈ X |
g · x = x for all g ∈ G}.

Since α is a left action, it satisfies; (i) g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G and
x ∈ X, (ii) 1 · x = x for all x ∈ X, where 1 denotes the identity element of G.

1. Show that the relation ∼ on X is an equivalence relation.

Sol. Since 1 · x = x by (i), x ∼ x. If x ∼ y, there exists g ∈ G such that g · x = y.
Now g−1 ∈ G and

x = 1 · x = (g−1g) · x = g−1 · (g · x) = g−1y.

Hence y ∼ x. Suppose x ∼ y and y ∼ z. Then there exists g1, g2 ∈ G such that
g1 · x = y and g2 · y = z. Then by (ii), (g2g1) · x = g2 · (g1 · x) = g2 · y = z. Since
g2g1 ∈ G, x ∼ z. Hence ∼ is an equivalence relation.

2. For x ∈ X let [x] denote the equivalence class with respect to ∼ containing x. (This
is called an orbit and denoted by G · x.) Show that x ∈ CX(G) ⇔ |[x]| = 1.

Sol. Suppose x ∈ CX(G). Then g · x = x for all g ∈ G. Hence [x] = {x}.
Conversely if |[x]| = 1, then [x] = {x} as x ∈ [x]. For all g ∈ G, x ∼ g · x. Since
g · x ∈ [x] = {x}, g · x = x and x ∈ CX(G).

3. Show that |[x]| is a power of p for all x ∈ X. (Hint: (5.2.1) or Proposition 7.3 in
the lecture.)

Sol. By (5.2.1), |[x]| = (G : StG(x)), where StG(x) = {g ∈ G | g · x = x}. Since
StG(x) ≤ G, (G : StG(x)) divides |G| = pn. Therefore |[x]| is a power of p.

4. Show that |X| ≡ |CX(G)| (mod p).

Sol. Let [x1], [x2], . . . [xm] be distinct equivalence classes. By the previous prob-
lem, |[xi]| is a power of p and by 2, |[xi]| = 1 if and only if xi ∈ CX(G). Thus
xi ̸∈ CX(G) if and only if |[xi]| is divisible by p. Suppose |[x1]| = · · · |[xs]| = 1 <
|[xs+1]|, . . . , |[xm]|. Then

|X| = |[x1]| + · · · + |[xs]| + |[xs+1]| + · · · + |[xm]|
≡ |[x1]| + · · · + |[xs]| (mod p)

≡ s (mod p)

≡ |CX(G)| (mod p).

This proves the assertion.



Quiz 8 Due: 10:10 a.m. June 11, 2008

Division: ID#: Name:

Let G be a finite group of order p2q, where p and q are primes. Let Sylp(G) denote the
set of Sylow p-subgroups and Sylq(G) Sylow q-subgroups, and P ∈ Sylp(G), Q ∈ Sylq(G).

1. Show that |Sylq(G)| is either 1, p or p2.

2. Suppose |Sylq(G)| = p2. Then P ¢G. [Hint: Show first that each Sylow q-subgroup
contains q− 1 elements of order q and there are p2(q− 1) elements of order q. Show
next that there are only p2 elements of order a power of p to conclude that P ¢ G.]

3. Suppose |Sylq(G)| = p. Show that p > q and P ¢ G.

4. Suppose |Sylq(G)| = p and H = NG(Q). Let R be a Sylow p-subgroup of H. Show
that R = Z(G). [Hint: Using the fact that p > q, show that H ≅ R × Q. Use the
fact that each Sylow p-subgroup is abelian.]

5. Show that G is not simple.

Message: Any questions or requests?
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Let G be a finite group of order p2q, where p and q are primes. Let Sylp(G) denote the
set of Sylow p-subgroups and Sylq(G) Sylow q-subgroups, and P ∈ Sylp(G), Q ∈ Sylq(G).

1. Show that |Sylq(G)| is either 1, p or p2.

Sol. Let α : G×Sylq(G) → Sylq(G) (Q 7→ gQg−1) be a left action. Then all Sylow
q-subgroups are in one orbit by (5.3.8) and the length of the orbit Sylq(G) of Q is
|G : StG(Q)|. Moreover

StG(Q) = {g ∈ G | g · Q = Q} = {g ∈ G | gQg−1 = Q} = NG(Q) ≥ Q.

By (4.1.3) in the textbook, |Sylq(G)| = |G : NG(Q)| | |G : Q| = p2. Therefore, it is
either 1, p or p2.

2. Suppose |Sylq(G)| = p2. Then P ¢G. [Hint: Show first that each Sylow q-subgroup
contains q− 1 elements of order q and there are p2(q− 1) elements of order q. Show
next that there are only p2 elements of order a power of p to conclude that P ¢ G.]

Sol. By assumption, NG(Q) = Q. Let x ∈ G − Q. Then Q ∩ xQx−1 = 1 and all
elements of order q is in one of the p2 Sylow q-subgroups. Since non identity element
of each Sylow q-subgroup is of order q, there are altogether p2(q−1) element of order
q. Hence p2q − p2(q − 1) = p2 is exactly the number of elements in P , gPg−1 = P
for all g ∈ G, as there are no elements of order q in gPg−1. Therefore P ¢ G.

3. Suppose |Sylq(G)| = p. Show that p > q and P ¢ G.

Sol. Since p = |Sylq(G)| ≡ 1 (mod q), q | p− 1 and p > q. Now |Sylp(G)| = |G :
NG(P )| | q and |Sylp(G)| ≡ 1 (mod p), we have |Sylp(G)| = 1. Thus P ¢ G.

4. Suppose |Sylq(G)| = p and H = NG(Q). Let R be a Sylow p-subgroup of H. Show
that R = Z(G). [Hint: Using the fact that p > q, show that H ≅ R × Q. Use the
fact that each Sylow p-subgroup is abelian.]

Sol. |H| = pq. Hence Q ¢ H and H = RQ. Since |Sylp(H)| = |H : NH(R)| | q
and |Sylp(H)| ≡ 1 (mod p), we have |Sylp(H)| = 1 as p > q. Thus H ≅ R × Q.
In particular CG(R) ⊃ Q. Since every Sylow p-subgroup is of order p2 and hence
abelian, a Sylow subgroup containing R is contained in CG(R). Thus |CG(R)| is
divisible by p2q = |G| and CG(R) = G. This proves R ⊆ Z(G). Since NG(Q) =
H < G, p2 - |Z(G)| and q - |Z(G)|, we have Z(G) = R.

5. Show that G is not simple.

Sol. If |Sylq(G)| = 1, then 1 ̸= Q¢G. Other cases are treated above. In particular,
if Q is not normal in G, then P is normal in G.


