QUIZ 1 Due: 10:10 a.m. April 21, 2008
Division: ID#: Name:

8

5 |-

ta_ (123456738 (12
=1 45926 783) 741

1. Compute mom 1.

345 67
5 8 3 7 6

2. Express each of ¢ and mon~! as a product of disjoint cycles. (Do you recognize

some similarity between o and rom~1?)

3. Express each of 7 and ¢ as a product of transpositions (2-cycles (i,7)). (Is it a
shortest?)

4. Express each of 7 and ¢ as a product of adjacent transpositions (1, 2), (2, 3), ..., (7,8).
(Is it a shortest?)

5. Determine sign(7) and sign(o).

Message: What do you expect from this course? Any requests?
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leta_ (123456738 (12345678
™\14526783)°7"\4158376¢62)
1. Compute o1

Sol.

mor !

_12345678 1 23 45 6 7 8 145 26 7 8 3
~\1 4526 783 4 1 5 8 3 7 6 2 1 23 45 6 7 8
_12345678

\2 34165 87)

2. Express each of o and mon~! as a product of disjoint cycles. (Do you recognize

some similarity between o and mor~1?)
Sol.

o = (1,4,8,2)(3,5)(6,7),

! (1,2,3,4)(5,6)(7,8)

(= (7(1),7(4),7(8),m(2))(m(3),m(5))(w(6), (7).

3. Express each of 7 and ¢ as a product of transpositions (2-cycles (i,j)). (Is it a

shortest?)
Sol.

3
Q
3
I

= (2,4)(3,8)(3,7)(3,6)(3,5) (= (2,4)(3,5)(5,6)(6,7)(7,8)),
= (17 2)(1’ 8)(17 4)(3’ 5)(67 7) (: (17 4)(47 8)(87 2)(37 5)(6’ 7))

Use the formula in Corollary 3.1.4. Both of these are shortest.

4. Express each of m and ¢ as a product of adjacent transpositions (1, 2), (2, 3),...,(7,8).
(Is it a shortest?)

Sol.

T o= (3,4)(4,5)(5,6)(6,7)(7,8)(2,3)(3,4)
o = (7,8)(6,7)(3,4)(4,5)(5,6)(2,3)(3,4)(4,5)(5,6)(7,8)(6,7)(7,8)(1,2)

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The
minimal number of adjacent transpositions required to express each permutation
equals the number ¢ of the permutation to be calculated in the next problem. Can
you prove this fact?

5. Determine sign(m) and sign(o).
Sol. Since (1) = 7, sign(r) = (—1)" = —1. Similarly since (o) = (1),
sign(m) = (—1)® = —1. Since 7 is the product of 3 cycles including one 1 cycle,
sign(r) = (—1)%3 = —1 by Cauchy’s Formula in (3.1.9). Similarly o is the product
of 3 cycles, sign(c) = (—1)%2 = —1.



QUIZ 2 Due: 10:10 a.m. April 28, 2008
Division: ID#: Name:

1. Let R be the set of real numbers, and G = R\ {-1} ={z| (r € R) A (z # —1)}.
For z,y € G, let x xy = xy + = + y. Show that (G,x*) is a group. Do not forget to
check that * defines a binary operation on G.

2. Let (G,o0) is a group with the identity element e. Suppose that x o z = e for all
xr € G. Show that (G, o) is an abelian group, i.e., roy =youx for all z,y € G.

Message: Any questions, comments or requests?
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1. Let R be the set of real numbers, and G = R\ {—-1} ={z | (r € R) A (x # —1)}.
For z,y € G, let x *y = xy + x + y. Show that (G,x*) is a group. Do not forget to
check that * defines a binary operation on G.

Sol. Note that z*xy = (z+1)(y +1) — 1.

Clearly z*xy € R. Suppose —1 = zxy = (z+1)(y+1)—1. Then (x+1)(y+1) = 0.
Since x # —1 and y # —1, this is absurd. Hence z xy € G for all z,y € G.

Let x,y,z € G. Then
(xxy)xz = ((z+1)(y+1)—1)*z = (24+1)(y+1)(z4+1)—1 = xx((y+1)(z+1)—1) = a*(y*z).

Since z %0 = (z +1) — 1 = 2 = 0%z, 0 plays as the identity element in G. Let
x € G. Then

LR IS U S Y DU Sy MRS S B
T * -1 = —1=0= x —1= — 1) *zx.
xr+1 v r+1 r+1 r+1

Hence z has its inverse. Note that as = # —1, #1 — 1 € G. Therefore (G, *) is a

group. ]

2. Let (G, o) is a group with the identity element e. Suppose that z o x = e for all
x € G. Show that (G, o) is an abelian group, i.e., zoy =yox for all z,y € G.

Sol. By applications of the general associativity law, we omit parentheses. Let
x,y € G. Sincexoy e G,xoyoxoy=e,and rox =yoy =e. Hence

Yor =yYyoxroe =Yyoxroxroyoxroy =yoeoyoxroy =yoyoxroy =eoxroy = xroy.

Therefore, (G, o) is an abelian group. [ ]



QUIZ 3 Due: 10:10 a.m. May 7, 2008
Division: ID#: Name:

Let Z1s = {[0],[1],...,[17]} be a group with addition as its binary operation, and
Z7s be a group with multiplication as its binary operation. Recall that Z7g is the set of
invertible elements in Zg with respect to multiplication.

1. Find all elements in ([3]), i.e., the subgroup generated by [3], and the order of [3] in
Zlg .

2. Find all elements [a] € Z1g such that ([3]) = ([a]).

3. Find all elements in Z7;.

4. Show that [a]® = [1] for all [a] € Z74.

5. Determine whether or not Z7g is a cyclic group.

Message: Any requests or questions?
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Let Z1s = {[0],[1],...,[17]} be a group with addition as its binary operation, and
Z's be a group with multiplication as its binary operation. Recall that Z7g is the set of
invertible elements in Z,g with respect to multiplication.

1. Find all elements in ([3]), i.e., the subgroup generated by [3], and the order of [3] in

Z1s.

Sol.  Since [3] 4 [3] = [6], [3] + [3] + [3] = [6] + [3] = [9], [3] + [3] + [3] + [3] = [12]
and [3] + [3] + [3] + [3] + [3] + [3] = [0], we have the following by Proposition 3.4
(3.3.6).

(3]) = {10}, [3], [6], [9], [12], [15]}
and hence the order of [3], denoted by |[3]] = |{[3])| = 6.
(Note that when the operation is addition, we customarily denote [3] + [3] = 2[3],
[3] + [3] + [3] = 3[3] instead of using power notation.) m
2. Find all elements [a] € Z15 such that ([3]) = ([a]).

Sol.  If the condition is satisfied, [a] € ([3]) = {[0], [3], [6], [9], [12], [15]}. Check one
by one we find [a] = [3], or [15].

(Note that if [a] = m][3], then the greatest common divisor of m and 6 has to be 1
and we have m =1 or 5 if 0 < m < 5. See (4.1.7), (4.1.8).) |

3. Find all elements in Z7,.

Sol. If [a][b] = [ab] = [1] in Zg, there exists an integer m such that ab—1 = 18m.
Hence ab — 18m = 1. If d is a common divisor of a and 18, then it must divide 1.
Hence if [a] is invertible in Z;g with respect to multiplication, a is coprime to 18.

Conversely if a is coprime to 18, there are integers x and y satisfying ax + 18y = 1.
Then [a][x] = [az] = [1 — 18y] = [1] and [a] is invertible. Therefore

Zis = {01, [5], [7], [11], [13], [17]}-

Therefore | Z7g4| = 6. n
4. Show that [a]® = [1] for all [a] € Zs.

Sol.  [5]* = [5][5] = [25] = [7], [5]° = [3][5][5] = [7][5] = [35] = [17] = [-1],

51t = BIBNElS] = (1) = [-5] = (18], B = BIEBIGIE = (71 = [,

[5]5 = [5][5][5][5][5][5] = [1]. Hence all elements of Z*18 appear as a power of [5]

and [5]® = [1]. Thus [a] = [5]" for some i and [a]® = ([5]")® = ([5]°)* = [1]. This

proves the assertion. [

5. Determine whether or not Z7g is a cyclic group.

Sol. By the previous problem, we have shown that

Zis ={B]" |n e Z} = ([5)).

Thus Z7jg is a cyclic group. ]



QUIZ 4 Due: 10:10 a.m. May 14, 2008
Division: ID#: Name:

1. Let G be a group and H a nonempty subset of G. Show that if H~'H C H, then
H < G.

2. Let H be a subgroup of a group G, and a,b € G. Show the following.
(a) H=H!

(b) H'H = H.

(c) If a='b € H, then aH = bH.

(d) If aH = bH, then a 'b € H.

Message: Any questions or requests?
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1. Let G be a group and H a nonempty subset of G. Show that if H~'H C H, then
H<G.

Sol. (Since H is nonempty, it suffices to show that xy € H and x~! € H for all
z,y € H.)

Since H is nonempty, there is an element + € H. Hence 1 = v~ 'a €¢ H'H C H.
Thus v ' =2"'1e€ H'H C H. Let 7,y € H. Since ' € H, zy = (z7 ")y €
H™'H C H. Therefore zy € H and z~' € H for all z,y € H. [ ]

2. Let H be a subgroup of a group G, and a,b € G. Show the following.

(a) H=H"
Sol. Since H is a subgroup, H~ ' C H. Let h € H. Since H is a subgroup of
G, h™' € H. Therefore h=(h"') ' e H'and HCH!. Thus H=H ' =m

(b) H'H = H.
Sol. Let x,y € H. Since H is a subgroup of G, 27! € H and 27 'y € H.
Hence H~'H C H. Since H is a subgroup of G, 1 € H. Therefore h = 171h €
H'Hand HC H'H. Thus H'H = H. [

(c) If a='b € H, then aH = bH.
Sol.

aH =bb~'aH =b(a b)) "H CbH 'H = bH C aa'bH C aHH C aH.

Hence aH = bH. ]

(d) If aH = bH, then a™'b € H.
Sol.
ab=a"'bl € a 'bH = a'aH = H.

Therefore a~'b € H. n



QUIZ 5 Due: 10:10 a.m. May 21, 2008
Division: ID#: Name:

Let G = Sy, the symmetric group of degree 4, V' = {1, (1, 2)(3,4), (1,3)(2,4), (1,4)(2, 3)},
K =1{1,(1,2)(3,4)}, and H = ((1,2), (1, 3)). Show the following.

1. K<V, ie., K is a normal subgroup of V.

2. V<G, ie., V is a normal subgroup of G.

3. K is not a normal subgroup of G.

4. G/V is not an abelian group.

5. G=VHand VNH=1.

Message: Any questions or requests?
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Let G = Sy, the symmetric group of degree 4, V' = {1, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)},
K ={1,(1,2)(3,4)}, and H = ((1,2), (1, 3)). Show the following.

1. K<V, ie., K isanormal subgroup of V.
Sol. Let 0 € V. Then clearly 0> =1. 07! = 0.

(1,2)(3,4)(1,3)(2,4) = (1,4)(2,3) = (1,3)(2,4)(1,2)(3,4),

(1L,2)(3,4)(L,4)(2,3) = (1,3)(2,4) = (1,4)(2,3)(1,2)(3,4),
:3)(2,4)(L4)(2,3) = (1,2)(3,4) = (1,4)(2,3)(1,3)(2,4).
Hence V' < G, and V is abelian. Since K = ((1,2)(3,4)), K is a subgroup of V.
Since V is abelian, K is a normal subgroup of V. [ ]

2. V<@, ie., V is anormal subgroup of G.
Sol.  First note that V contains all permutations of type (a,b)(c,d) in Sy. Let

o € Sy. Then
a(a,b)(c,d)o™" = (o(a),a(b))(o(c), a(d)).

Hence omo~! € V for all 1 # 7 € V. It is clear that clo™! =1 € V, and V is a
normal subgroup of G. |

3. K is not a normal subgroup of G.

Sol. Since (1,3)(1,2)(3,4)(1,3) = (2,3)(1,4) € K, K is not normal in G. |

4. G/V is not an abelian group.

Sol. (1,2)(2,3)(1,2)(2,3) = (1,2,3)(1,2,3) = (1,3,2) ¢ V. Hence G' £ V and
G/V is not abelian.

By our computation above,
(1L,2)V)((2.3)V)((1,2)V)H((2,3)V) " = (1,3,2)V #V

Hence ((1,2)V)((2,3)V) # ((2,3)V)((1,2)V). n

5. G=VHand VNH =1

Sol. Since H = {1,(1,2),(2,3),(1,3),(1,2,3),(1,3,2)}, VN H = 1 part is clear.
Since
\VH| = |V||H|/|VNH|=24=|G]|.

Therefore VH = G.
Let z,y € H. If Vo = Vy, then yz=! € V. N H = 1. Hence distinct elements in H

belong to distinct cosets in G/V. Hence |VH| = |V||H| = 24. Therefore G = VH
as VH C(. ]



QUIZ (5} Due: 10:00 a.m. May 28, 2008
Division: ID#: Name:

Let m and n be positive integers. Let m be an assignment from Z, to Z,, defined by
[a],, = [a]m.

1. Show that if 7 is a mapping from Z, to Z,,, then m | n, i.e., there exists { € Z
such that n = fm.

2. Suppose ¢ | n and m | n. Then a mapping «a : Z,, — Z, x Z,, ([a], — ([a]s, [a]m) is
a homomorphism.

3. Show that the mapping « above is injective if and only if the least common multiple
of £ and m is n.

4. Show that the mapping « above is surjective if and only if the greatest common
divisor of ¢ and m is 1.

5. Show that if n = ¢m, and ¢ and m are coprime integers., i.e., ged(¢,m) = 1, then
Z, 22y X L.

Message: Any questions or requests?
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Let m and n be positive integers. Let m be an assignment from Z, to Z,, defined by
[a],, = [a]m.

1. Show that if 7 is a mapping from Z, to Z,,, then m | n, i.e., there exists { € Z
such that n = ¢m.

Sol. Suppose 7 is a mapping. Since [n}, = [0],, [n]m = [0]m. Hence m | n.

Conversely suppose m | n. If [a],, = [b],, then n | @ — b. Since m | n, m | a — b and

[a];, = [b]m. Therefore 7 is a well-defined mapping. n
2. Suppose ¢ | n and m | n. Then a mapping a: Z,, — Zy x Z,, ([a], — ([a]¢, [a]m) is

a homomorphism.

Sol. By 1, the assignments [a],, — [a], and [a],, — [a],, are mappings. Hence « is

a well-defined mapping. Now

aflaln + [bln) = a(la+0]n) = (la + 0], [a+ bm) = ([a]e + [b]e, [a]m + [b]m)
= ([ae, [alm) + ([]e; [b]m) = a(laln) + a([]n).

Hence « is a homomorphism. [ ]

3. Show that the mapping a above is injective if and only if the least common multiple
of £ and m is n.

Sol.  Suppose « is injective. Then a([al,) = ([al¢, [a]m) = ([0]¢, [0],,) implies [a], =
[0]. Hence m | a and ¢ | a implies n | a. By assumption n is a common multiple of
¢ and m. Let a be a common multiple of ¢ and m. Then clearly ¢ | a and m | a.
Hence n | a. Thus n is the least common multiple of ¢ and m.

Suppose n is the least common multiple of ¢ and m. If a is a common multiple
of ¢ and m, then n | a. Hence we have a([a],,) = ([al¢, [a]m) = ([0]¢, [0],) implies
la],, = [0],,, and « is injective. u

4. Show that the mapping a above is surjective if and only if the greatest common
divisor of ¢ and m is 1.

Sol. Suppose « is surjective. Then there exists [a],, such that [a], = [1], and
[a];, = [0],n. Hence there are integers s and ¢ such that a = ms = ¢t + 1. Hence
ms — ¢t = 1. If d is the greatest common divisor of ¢ and m, then d divides

ms — ¢t = 1. Hence d = 1.

Conversely if ¢ and m are coprime each other, there are integers s and t such
that s¢ +tm = 1. (To prove this fact consider (¢,m) in Z. Since Z is cyclic
and every subgroup of a cyclic group is cyclic, there exists a nonnegative integer
d such that (¢,;m) = (d). Since {,m € ({,;m), d | £ and d | m. Hence d = 1.
Since d € (¢, m), there exist integers s,t such that 1 = s¢ + tm.) Now let x and
y are arbitrary integers. Then [ztm + ysl], = [zvtm], = [x(1 — sl)], = [z]e, and
[ztm + ysl]m = [ysl]m = [y(1 — tm)]m = [y]m and « is surjective. u

5. Show that if n = ¢m, and ¢ and m are coprime integers., i.e., gcd(¢,m) = 1, then
Z,~ZLyX L,

Sol. By 3 and 4, the mapping « above is an isomorphism. Hence we have Z,, ~
Z@ X Zm |



QUIZ 7 Due: 10:10 a.m. June 4, 2008

Division: ID#: Name:

Let G be a finite group of order p”, where p is a prime number, and X a non-empty
finite set. Let a: G x X — X ((g,x) — ¢ - x) be a left action of G on X. For z,y € X
we write x ~ y if there is an element g € G such that y = g- 2. Let Cx(G) = {z € X |

g-x =z for all g € G}.

1. Show that the relation ~ on X is an equivalence relation.

2. For x € X let [z] denote the equivalence class with respect to ~ containing x. (This
is called an orbit and denoted by G - x.) Show that z € Cx(G) < |[z]| = 1.

3. Show that |[z]| is a power of p for all z € X. (Hint: (5.2.1) or Proposition 7.3 in

the lecture.)

4. Show that |X| = |Cx(G)| (mod p).

Message: Any questions or requests?
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Let G be a finite group of order p”, where p is a prime number, and X a non-empty
finite set. Let a: G x X — X ((g,x) — ¢ - x) be a left action of G on X. For z,y € X
we write x ~ y if there is an element g € G such that y = g - x. Let Cx(G) = {z € X |
g-x =z for all g € G}.

Since « is a left action, it satisfies; (i) g1 - (g2 - ) = (g1g2) - « for all g;,¢92 € G and
re X, (ii) 1 -2 =uaforall z € X, where 1 denotes the identity element of G.

1. Show that the relation ~ on X is an equivalence relation.

Sol. Since 1.z =x by (i),  ~ x. If z ~ y, there exists g € G such that g-z = y.
Now g~! € G and

1

r=1-z=(g"g)-a=g"(9-2)=g"y

Hence y ~ z. Suppose © ~ y and y ~ z. Then there exists g1, g2 € G such that
g1-x=yand g2 -y =z Then by (i), (g291) - = g2 (91 - ) = g2 -y = 2. Since
g1 € G, x ~ z. Hence ~ is an equivalence relation. [

2. For z € X let [z] denote the equivalence class with respect to ~ containing x. (This
is called an orbit and denoted by G - z.) Show that x € Cx(G) < |[z]| = 1.

Sol. Suppose z € Cx(G). Then g-x = zx for all ¢ € G. Hence [z] = {z}.
Conversely if |[z]| = 1, then [z] = {z} as x € [z]. For all g € G, x ~ g-x. Since
g-x€x]={x}, g-x=2xand x € Cx(G). u

3. Show that |[z]| is a power of p for all z € X. (Hint: (5.2.1) or Proposition 7.3 in
the lecture.)

Sol. By (5.2.1), |[z]| = (G : Stg(z)), where Stg(z) = {9 € G | g-x = x}. Since
Stg(z) < G, (G : Stg(z)) divides |G| = p". Therefore |[z]| is a power of p. |

4. Show that |X| = |Cx(G)| (mod p).

Sol.  Let [zq], [z2], ... [x,] be distinct equivalence classes. By the previous prob-
lem, |[z;]| is a power of p and by 2, |[z;]| = 1 if and only if z; € Cx(G). Thus
z; & Cx(Q) if and only if |[z;]| is divisible by p. Suppose |[z1]] = -+ |[zs]| = 1 <
I[zs41]]; -5 |[Tm]|- Then
(XTI = ][+ ]l + sl + -+ (o]
= |zl +---+ =]l (mod p)
= s (mod p)

= |Cx(G)]  (mod p).

This proves the assertion. [



QUIZ 8 Due: 10:10 a.m. June 11, 2008
Division: ID#: Name:

Let G be a finite group of order p?q, where p and ¢ are primes. Let Syl,(G) denote the
set of Sylow p-subgroups and Syl (G) Sylow g-subgroups, and P € Syl (G), Q € Syl (G).

1. Show that |Syl (G)] is either 1, p or p?.

2. Suppose [Syl,(G)| = p*. Then P <G. [Hint: Show first that each Sylow g-subgroup
contains ¢ — 1 elements of order ¢ and there are p?(¢ — 1) elements of order ¢q. Show
next that there are only p* elements of order a power of p to conclude that P <1 G']

3. Suppose |Syl,(G)| = p. Show that p > ¢ and P < G.

4. Suppose Syl (G)| = p and H = Ng(Q). Let R be a Sylow p-subgroup of H. Show
that R = Z(G). [Hint: Using the fact that p > ¢, show that H ~ R x Q). Use the
fact that each Sylow p-subgroup is abelian.|

5. Show that G is not simple.

Message: Any questions or requests?
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Let G be a finite group of order p?q, where p and ¢ are primes. Let Syl,(G) denote the
set of Sylow p-subgroups and Syl (G) Sylow g-subgroups, and P € Syl,(G), @ € Syl (G).

1. Show that [Syl (G)] is either 1, p or p®.

Sol.  Let a: G xSyl (G) — Syl (G) (Q — gQg~") be aleft action. Then all Sylow
g-subgroups are in one orbit by (5.3.8) and the length of the orbit Syl (G) of @ is
|G : Ste(Q)]. Moreover

Sta(@) ={9€Glg-Q=0Q}={g€G|gQg " =Q} = Na(Q) = Q.

By (4.1.3) in the textbook, |Syl (G)| = |G : Ne(Q)| | |G : Q| = p®. Therefore, it is
either 1, p or p?. [

2. Suppose [Syl,(G)| = p*. Then P < G. [Hint: Show first that each Sylow g-subgroup
contains ¢ — 1 elements of order ¢ and there are p?(¢ — 1) elements of order ¢. Show
next that there are only p? elements of order a power of p to conclude that P <1G']

Sol. By assumption, Ng(Q) = Q. Let z € G — Q. Then Q NzQz~! =1 and all
elements of order ¢ is in one of the p? Sylow g-subgroups. Since non identity element
of each Sylow g-subgroup is of order ¢, there are altogether p?(q—1) element of order
q. Hence p?q — p*(q¢ — 1) = p? is exactly the number of elements in P, gPg~! = P
for all g € G, as there are no elements of order ¢ in gPg~!. Therefore P <1 G. |

3. Suppose |Syl,(G)| = p. Show that p > ¢ and P < G.

Sol.  Since p = [Syl,(G)] =1 (mod q), q|p—1andp>q. Now [SylL(G)|=|G:
Nea(P)| | ¢ and [Syl,(G)|=1 (mod p), we have [Syl (G)| = 1. Thus P < G. u

4. Suppose [Syl (G)| = p and H = Ng(Q). Let R be a Sylow p-subgroup of H. Show
that R = Z(G). [Hint: Using the fact that p > ¢, show that H ~ R x ). Use the
fact that each Sylow p-subgroup is abelian.|
Sol. |H| = pq. Hence Q <« H and H = RQ. Since [Syl,(H)| = |H : Ny(R)| | q
and [Syl,(H)| =1 (mod p), we have |Syl,(H)| =1 asp > q. Thus H ~ R x Q.
In particular C(R) D Q. Since every Sylow p-subgroup is of order p? and hence
abelian, a Sylow subgroup containing R is contained in Cg(R). Thus |Cq(R)| is
divisible by p?q = |G| and Cz(R) = G. This proves R C Z(G). Since Ng(Q) =
H < G, p*1|Z(G)| and ¢ 1 |Z(G)|, we have Z(G) = R. u

5. Show that G is not simple.

Sol. If Syl (G)| = 1, then 1 # Q<IG. Other cases are treated above. In particular,
if () is not normal in G, then P is normal in G. ]



