Quiz 1

Due: 10:10 a.m. April 21, 2008
Division:
ID\#:
Let $\pi=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 5 & 2 & 6 & 7 & 8 & 3\end{array}\right), \sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 5 & 8 & 3 & 7 & 6 & 2\end{array}\right)$.

1. Compute $\pi \sigma \pi^{-1}$.
2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles. (Do you recognize some similarity between σ and $\pi \sigma \pi^{-1}$?)
3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a shortest?)
4. Express each of π and σ as a product of adjacent transpositions $(1,2),(2,3), \ldots,(7,8)$. (Is it a shortest?)
5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Message: What do you expect from this course? Any requests?

Solutions to Quiz 1

$$
\text { Let } \pi=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 4 & 5 & 2 & 6 & 7 & 8 & 3
\end{array}\right), \sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 5 & 8 & 3 & 7 & 6 & 2
\end{array}\right) \text {. }
$$

1. Compute $\pi \sigma \pi^{-1}$.

Sol.

$$
\begin{aligned}
& \pi \sigma \pi^{-1} \\
& =\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 4 & 5 & 2 & 6 & 7 & 8 & 3
\end{array}\right)\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 5 & 8 & 3 & 7 & 6 & 2
\end{array}\right)\left(\begin{array}{llllllll}
1 & 4 & 5 & 2 & 6 & 7 & 8 & 3 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}\right) \\
& =\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 1 & 6 & 5 & 8 & 7
\end{array}\right) .
\end{aligned}
$$

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles. (Do you recognize some similarity between σ and $\pi \sigma \pi^{-1}$?)
Sol.

$$
\begin{aligned}
\sigma & =(1,4,8,2)(3,5)(6,7) \\
\pi \sigma \pi^{-1} & =(1,2,3,4)(5,6)(7,8) \\
(& =(\pi(1), \pi(4), \pi(8), \pi(2))(\pi(3), \pi(5))(\pi(6), \pi(7))
\end{aligned}
$$

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a shortest?)
Sol.

$$
\begin{aligned}
& \pi=(2,4)(3,8)(3,7)(3,6)(3,5)(=(2,4)(3,5)(5,6)(6,7)(7,8)), \\
& \sigma=(1,2)(1,8)(1,4)(3,5)(6,7)(=(1,4)(4,8)(8,2)(3,5)(6,7)) .
\end{aligned}
$$

Use the formula in Corollary 3.1.4. Both of these are shortest.
4. Express each of π and σ as a product of adjacent transpositions $(1,2),(2,3), \ldots,(7,8)$. (Is it a shortest?)
Sol.

$$
\begin{aligned}
\pi & =(3,4)(4,5)(5,6)(6,7)(7,8)(2,3)(3,4) \\
\sigma & =(7,8)(6,7)(3,4)(4,5)(5,6)(2,3)(3,4)(4,5)(5,6)(7,8)(6,7)(7,8)(1,2)
\end{aligned}
$$

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The minimal number of adjacent transpositions required to express each permutation equals the number ℓ of the permutation to be calculated in the next problem. Can you prove this fact?
5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Sol. Since $\ell(\pi)=7, \operatorname{sign}(\pi)=(-1)^{7}=-1$. Similarly since $\ell(\sigma)=(-1)^{13}$, $\operatorname{sign}(\pi)=(-1)^{13}=-1$. Since π is the product of 3 cycles including one 1 cycle, $\operatorname{sign}(\pi)=(-1)^{8-3}=-1$ by Cauchy's Formula in (3.1.9). Similarly σ is the product of 3 cycles, $\operatorname{sign}(\sigma)=(-1)^{8-3}=-1$.

Quiz 2

Division:

ID\#:

1. Let \boldsymbol{R} be the set of real numbers, and $G=\boldsymbol{R} \backslash\{-1\}=\{x \mid(x \in \boldsymbol{R}) \wedge(x \neq-1)\}$. For $x, y \in G$, let $x * y=x y+x+y$. Show that $(G, *)$ is a group. Do not forget to check that $*$ defines a binary operation on G.
2. Let (G, \circ) is a group with the identity element e. Suppose that $x \circ x=e$ for all $x \in G$. Show that (G, \circ) is an abelian group, i.e., $x \circ y=y \circ x$ for all $x, y \in G$.

Solutions to Quiz 2

1. Let \boldsymbol{R} be the set of real numbers, and $G=\boldsymbol{R} \backslash\{-1\}=\{x \mid(x \in \boldsymbol{R}) \wedge(x \neq-1)\}$. For $x, y \in G$, let $x * y=x y+x+y$. Show that $(G, *)$ is a group. Do not forget to check that $*$ defines a binary operation on G.
Sol. Note that $x * y=(x+1)(y+1)-1$.
Clearly $x * y \in \boldsymbol{R}$. Suppose $-1=x * y=(x+1)(y+1)-1$. Then $(x+1)(y+1)=0$.
Since $x \neq-1$ and $y \neq-1$, this is absurd. Hence $x * y \in G$ for all $x, y \in G$.
Let $x, y, z \in G$. Then
$(x * y) * z=((x+1)(y+1)-1) * z=(x+1)(y+1)(z+1)-1=x *((y+1)(z+1)-1)=x *(y * z)$.
Since $x * 0=(x+1)-1=x=0 * x, 0$ plays as the identity element in G. Let $x \in G$. Then

$$
x *\left(\frac{1}{x+1}-1\right)=(x+1) \frac{1}{x+1}-1=0=\frac{1}{x+1}(x+1)-1=\left(\frac{1}{x+1}-1\right) * x .
$$

Hence x has its inverse. Note that as $x \neq-1, \frac{1}{x+1}-1 \in G$. Therefore $(G, *)$ is a group.
2. Let (G, \circ) is a group with the identity element e. Suppose that $x \circ x=e$ for all $x \in G$. Show that (G, \circ) is an abelian group, i.e., $x \circ y=y \circ x$ for all $x, y \in G$.
Sol. By applications of the general associativity law, we omit parentheses. Let $x, y \in G$. Since $x \circ y \in G, x \circ y \circ x \circ y=e$, and $x \circ x=y \circ y=e$. Hence
$y \circ x=y \circ x \circ e=y \circ x \circ x \circ y \circ x \circ y=y \circ e \circ y \circ x \circ y=y \circ y \circ x \circ y=e \circ x \circ y=x \circ y$.
Therefore, (G, \circ) is an abelian group.

Quiz 3

Division: ID\#: Name:
Let $\boldsymbol{Z}_{18}=\{[0],[1], \ldots,[17]\}$ be a group with addition as its binary operation, and \boldsymbol{Z}_{18}^{*} be a group with multiplication as its binary operation. Recall that \boldsymbol{Z}_{18}^{*} is the set of invertible elements in \boldsymbol{Z}_{18} with respect to multiplication.

1. Find all elements in $\langle[3]\rangle$, i.e., the subgroup generated by [3], and the order of [3] in Z_{18}.
2. Find all elements $[a] \in \boldsymbol{Z}_{18}$ such that $\langle[3]\rangle=\langle[a]\rangle$.
3. Find all elements in \boldsymbol{Z}_{18}^{*}.
4. Show that $[a]^{6}=[1]$ for all $[a] \in \boldsymbol{Z}_{18}^{*}$.
5. Determine whether or not \boldsymbol{Z}_{18}^{*} is a cyclic group.

Message: Any requests or questions?

Solutions to Quiz 3

Let $\boldsymbol{Z}_{18}=\{[0],[1], \ldots,[17]\}$ be a group with addition as its binary operation, and \boldsymbol{Z}_{18}^{*} be a group with multiplication as its binary operation. Recall that \boldsymbol{Z}_{18}^{*} is the set of invertible elements in \boldsymbol{Z}_{18} with respect to multiplication.

1. Find all elements in $\langle[3]\rangle$, i.e., the subgroup generated by [3], and the order of [3] in Z_{18}.

Sol. Since $[3]+[3]=[6],[3]+[3]+[3]=[6]+[3]=[9],[3]+[3]+[3]+[3]=[12]$ and $[3]+[3]+[3]+[3]+[3]+[3]=[0]$, we have the following by Proposition 3.4 (3.3.6).

$$
\langle[3]\rangle=\{[0],[3],[6],[9],[12],[15]\}
$$

and hence the order of [3], denoted by $|[3]|=|\langle[3]\rangle|=6$.
(Note that when the operation is addition, we customarily denote [3] $+[3]=2[3]$, $[3]+[3]+[3]=3[3]$ instead of using power notation.)
2. Find all elements $[a] \in \boldsymbol{Z}_{18}$ such that $\langle[3]\rangle=\langle[a]\rangle$.

Sol. If the condition is satisfied, $[a] \in\langle[3]\rangle=\{[0],[3],[6],[9],[12],[15]\}$. Check one by one we find $[a]=[3]$, or $[15]$.
(Note that if $[a]=m[3]$, then the greatest common divisor of m and 6 has to be 1 and we have $m=1$ or 5 if $0 \leq m \leq 5$. See (4.1.7), (4.1.8).)
3. Find all elements in \boldsymbol{Z}_{18}^{*}.

Sol. If $[a][b]=[a b]=[1]$ in \boldsymbol{Z}_{18}, there exists an integer m such that $a b-1=18 \mathrm{~m}$. Hence $a b-18 m=1$. If d is a common divisor of a and 18 , then it must divide 1 . Hence if $\left[a\right.$] is invertible in \boldsymbol{Z}_{18} with respect to multiplication, a is coprime to 18. Conversely if a is coprime to 18 , there are integers x and y satisfying $a x+18 y=1$. Then $[a][x]=[a x]=[1-18 y]=[1]$ and $[a]$ is invertible. Therefore

$$
\boldsymbol{Z}_{18}^{*}=\{[1],[5],[7],[11],[13],[17]\} .
$$

Therefore $\left|\boldsymbol{Z}_{18}^{*}\right|=6$.
4. Show that $[a]^{6}=[1]$ for all $[a] \in \boldsymbol{Z}_{18}^{*}$.

Sol. $[5]^{2}=[5][5]=[25]=[7],[5]^{3}=[5][5][5]=[7][5]=[35]=[17]=[-1]$, $[5]^{4}=[5][5][5][5]=[-1][5]=[-5]=[13],[5]^{5}=[5][5][5][5][5]=[-7]=[11]$, $[5]^{6}=[5][5][5][5][5][5]=[1]$. Hence all elements of $\boldsymbol{Z}^{*} 18$ appear as a power of [5] and $[5]^{6}=[1]$. Thus $[a]=[5]^{i}$ for some i and $[a]^{6}=\left([5]^{i}\right)^{6}=\left([5]^{6}\right)^{i}=[1]$. This proves the assertion.
5. Determine whether or not \boldsymbol{Z}_{18}^{*} is a cyclic group.

Sol. By the previous problem, we have shown that

$$
\boldsymbol{Z}_{18}^{*}=\left\{[5]^{n} \mid n \in \boldsymbol{Z}\right\}=\langle[5]\rangle .
$$

Thus \boldsymbol{Z}_{18}^{*} is a cyclic group.

Quiz 4

Due: 10:10 a.m. May 14, 2008
Division:
ID\#: Name:

1. Let G be a group and H a nonempty subset of G. Show that if $H^{-1} H \subseteq H$, then $H \leq G$.
2. Let H be a subgroup of a group G, and $a, b \in G$. Show the following.
(a) $H=H^{-1}$.
(b) $H^{-1} H=H$.
(c) If $a^{-1} b \in H$, then $a H=b H$.
(d) If $a H=b H$, then $a^{-1} b \in H$.

Solutions to Quiz 4

1. Let G be a group and H a nonempty subset of G. Show that if $H^{-1} H \subseteq H$, then $H \leq G$.
Sol. (Since H is nonempty, it suffices to show that $x y \in H$ and $x^{-1} \in H$ for all $x, y \in H$.)
Since H is nonempty, there is an element $x \in H$. Hence $1=x^{-1} x \in H^{-1} H \subseteq H$. Thus $x^{-1}=x^{-1} 1 \in H^{-1} H \subseteq H$. Let $x, y \in H$. Since $x^{-1} \in H, x y=\left(x^{-1}\right)^{-1} y \in$ $H^{-1} H \subseteq H$. Therefore $x y \in H$ and $x^{-1} \in H$ for all $x, y \in H$.
2. Let H be a subgroup of a group G, and $a, b \in G$. Show the following.
(a) $H=H^{-1}$.

Sol. Since H is a subgroup, $H^{-1} \subseteq H$. Let $h \in H$. Since H is a subgroup of $G, h^{-1} \in H$. Therefore $h=\left(h^{-1}\right)^{-1} \in H^{-1}$ and $H \subseteq H^{-1}$. Thus $H=H^{-1}$.
(b) $H^{-1} H=H$.

Sol. Let $x, y \in H$. Since H is a subgroup of $G, x^{-1} \in H$ and $x^{-1} y \in H$. Hence $H^{-1} H \subseteq H$. Since H is a subgroup of $G, 1 \in H$. Therefore $h=1^{-1} h \in$ $H^{-1} H$ and $H \subseteq H^{-1} H$. Thus $H^{-1} H=H$.
(c) If $a^{-1} b \in H$, then $a H=b H$.

Sol.

$$
a H=b b^{-1} a H=b\left(a^{-1} b\right)^{-1} H \subseteq b H^{-1} H=b H \subseteq a a^{-1} b H \subseteq a H H \subseteq a H .
$$

Hence $a H=b H$.
(d) If $a H=b H$, then $a^{-1} b \in H$.

Sol.

$$
a^{-1} b=a^{-1} b 1 \in a^{-1} b H=a^{-1} a H=H .
$$

Therefore $a^{-1} b \in H$.

Quiz 5

Let $G=S_{4}$, the symmetric group of degree $4, V=\{1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$, $K=\{1,(1,2)(3,4)\}$, and $H=\langle(1,2),(1,3)\rangle$. Show the following.

1. $K \triangleleft V$, i.e., K is a normal subgroup of V.
2. $V \triangleleft G$, i.e., V is a normal subgroup of G.
3. K is not a normal subgroup of G.
4. G / V is not an abelian group.
5. $G=V H$ and $V \cap H=1$.

Solutions to Quiz 5

Let $G=S_{4}$, the symmetric group of degree $4, V=\{1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$, $K=\{1,(1,2)(3,4)\}$, and $H=\langle(1,2),(1,3)\rangle$. Show the following.

1. $K \triangleleft V$, i.e., K is a normal subgroup of V.

Sol. Let $\sigma \in V$. Then clearly $\sigma^{2}=1$. $\sigma^{-1}=\sigma$.

$$
\begin{aligned}
& (1,2)(3,4)(1,3)(2,4)=(1,4)(2,3)=(1,3)(2,4)(1,2)(3,4), \\
& (1,2)(3,4)(1,4)(2,3)=(1,3)(2,4)=(1,4)(2,3)(1,2)(3,4), \\
& (1,3)(2,4)(1,4)(2,3)=(1,2)(3,4)=(1,4)(2,3)(1,3)(2,4) .
\end{aligned}
$$

Hence $V \leq G$, and V is abelian. Since $K=\langle(1,2)(3,4)\rangle, K$ is a subgroup of V. Since V is abelian, K is a normal subgroup of V.
2. $V \triangleleft G$, i.e., V is a normal subgroup of G.

Sol. First note that V contains all permutations of type $(a, b)(c, d)$ in S_{4}. Let $\sigma \in S_{4}$. Then

$$
\sigma(a, b)(c, d) \sigma^{-1}=(\sigma(a), \sigma(b))(\sigma(c), \sigma(d)) .
$$

Hence $\sigma \pi \sigma^{-1} \in V$ for all $1 \neq \pi \in V$. It is clear that $\sigma 1 \sigma^{-1}=1 \in V$, and V is a normal subgroup of G.
3. K is not a normal subgroup of G.

Sol. \quad Since $(1,3)(1,2)(3,4)(1,3)=(2,3)(1,4) \notin K, K$ is not normal in G.
4. G / V is not an abelian group.

Sol. $\quad(1,2)(2,3)(1,2)(2,3)=(1,2,3)(1,2,3)=(1,3,2) \notin V$. Hence $G^{\prime} \not \leq V$ and G / V is not abelian.

By our computation above,

$$
((1,2) V)((2,3) V)((1,2) V)^{-1}((2,3) V)^{-1}=(1,3,2) V \neq V
$$

Hence $((1,2) V)((2,3) V) \neq((2,3) V)((1,2) V)$.
5. $G=V H$ and $V \cap H=1$.

Sol. Since $H=\{1,(1,2),(2,3),(1,3),(1,2,3),(1,3,2)\}, V \cap H=1$ part is clear. Since

$$
|V H|=|V||H| /|V \cap H|=24=|G| .
$$

Therefore $V H=G$.
Let $x, y \in H$. If $V x=V y$, then $y x^{-1} \in V \cap H=1$. Hence distinct elements in H belong to distinct cosets in G / V. Hence $|V H|=|V||H|=24$. Therefore $G=V H$ as $V H \subseteq G$.

Quiz 6

Division: ID\#: Name:
Let m and n be positive integers. Let π be an assignment from \boldsymbol{Z}_{n} to \boldsymbol{Z}_{m} defined by $[a]_{n} \mapsto[a]_{m}$.

1. Show that if π is a mapping from \boldsymbol{Z}_{n} to \boldsymbol{Z}_{m}, then $m \mid n$, i.e., there exists $\ell \in \boldsymbol{Z}$ such that $n=\ell m$.
2. Suppose $\ell \mid n$ and $m \mid n$. Then a mapping $\alpha: \boldsymbol{Z}_{n} \rightarrow \boldsymbol{Z}_{\ell} \times \boldsymbol{Z}_{m}\left([a]_{n} \mapsto\left([a]_{\ell},[a]_{m}\right)\right.$ is a homomorphism.
3. Show that the mapping α above is injective if and only if the least common multiple of ℓ and m is n.
4. Show that the mapping α above is surjective if and only if the greatest common divisor of ℓ and m is 1 .
5. Show that if $n=\ell m$, and ℓ and m are coprime integers., i.e., $\operatorname{gcd}(\ell, m)=1$, then $\boldsymbol{Z}_{n} \simeq \boldsymbol{Z}_{\ell} \times \boldsymbol{Z}_{m}$.

Solutions to Quiz 6

Let m and n be positive integers. Let π be an assignment from \boldsymbol{Z}_{n} to \boldsymbol{Z}_{m} defined by $[a]_{n} \mapsto[a]_{m}$.

1. Show that if π is a mapping from \boldsymbol{Z}_{n} to \boldsymbol{Z}_{m}, then $m \mid n$, i.e., there exists $\ell \in \boldsymbol{Z}$ such that $n=\ell m$.
Sol. Suppose π is a mapping. Since $[n]_{n}=[0]_{n},[n]_{m}=[0]_{m}$. Hence $m \mid n$.
Conversely suppose $m \mid n$. If $[a]_{n}=[b]_{n}$, then $n \mid a-b$. Since $m|n, m| a-b$ and $[a]_{m}=[b]_{m}$. Therefore π is a well-defined mapping.
2. Suppose $\ell \mid n$ and $m \mid n$. Then a mapping $\alpha: \boldsymbol{Z}_{n} \rightarrow \boldsymbol{Z}_{\ell} \times \boldsymbol{Z}_{m}\left([a]_{n} \mapsto\left([a]_{\ell},[a]_{m}\right)\right.$ is a homomorphism.
Sol. By 1 , the assignments $[a]_{n} \mapsto[a]_{\ell}$ and $[a]_{n} \mapsto[a]_{m}$ are mappings. Hence α is a well-defined mapping. Now

$$
\begin{aligned}
\alpha\left([a]_{n}+[b]_{n}\right) & =\alpha\left([a+b]_{n}\right)=\left([a+b]_{\ell},[a+b]_{m}\right)=\left([a]_{\ell}+[b]_{\ell},[a]_{m}+[b]_{m}\right) \\
& =\left([a]_{\ell},[a]_{m}\right)+\left([b]_{\ell},[b]_{m}\right)=\alpha\left([a]_{n}\right)+\alpha\left([b]_{n}\right) .
\end{aligned}
$$

Hence α is a homomorphism.
3. Show that the mapping α above is injective if and only if the least common multiple of ℓ and m is n.
Sol. Suppose α is injective. Then $\alpha\left([a]_{n}\right)=\left([a]_{\ell},[a]_{m}\right)=\left([0]_{\ell},[0]_{m}\right)$ implies $[a]_{n}=$ [0]. Hence $m \mid a$ and $\ell \mid a$ implies $n \mid a$. By assumption n is a common multiple of ℓ and m. Let a be a common multiple of ℓ and m. Then clearly $\ell \mid a$ and $m \mid a$. Hence $n \mid a$. Thus n is the least common multiple of ℓ and m.
Suppose n is the least common multiple of ℓ and m. If a is a common multiple of ℓ and m, then $n \mid a$. Hence we have $\alpha\left([a]_{n}\right)=\left([a]_{\ell},[a]_{m}\right)=\left([0]_{\ell},[0]_{m}\right)$ implies $[a]_{n}=[0]_{n}$, and α is injective.
4. Show that the mapping α above is surjective if and only if the greatest common divisor of ℓ and m is 1 .
Sol. Suppose α is surjective. Then there exists $[a]_{n}$ such that $[a]_{\ell}=[1]_{\ell}$ and $[a]_{m}=[0]_{m}$. Hence there are integers s and t such that $a=m s=\ell t+1$. Hence $m s-\ell t=1$. If d is the greatest common divisor of ℓ and m, then d divides $m s-\ell t=1$. Hence $d=1$.
Conversely if ℓ and m are coprime each other, there are integers s and t such that $s \ell+t m=1$. (To prove this fact consider $\langle\ell, m\rangle$ in \boldsymbol{Z}. Since \boldsymbol{Z} is cyclic and every subgroup of a cyclic group is cyclic, there exists a nonnegative integer d such that $\langle\ell, m\rangle=\langle d\rangle$. Since $\ell, m \in\langle\ell, m\rangle, d \mid \ell$ and $d \mid m$. Hence $d=1$. Since $d \in\langle\ell, m\rangle$, there exist integers s, t such that $1=s \ell+t m$.) Now let x and y are arbitrary integers. Then $[x t m+y s \ell]_{\ell}=[x t m]_{\ell}=[x(1-s \ell)]_{\ell}=[x]_{\ell}$, and $[x t m+y s \ell]_{m}=[y s \ell]_{m}=[y(1-t m)]_{m}=[y]_{m}$ and α is surjective.
5. Show that if $n=\ell m$, and ℓ and m are coprime integers., i.e., $\operatorname{gcd}(\ell, m)=1$, then $\boldsymbol{Z}_{n} \simeq \boldsymbol{Z}_{\ell} \times \boldsymbol{Z}_{m}$.
Sol. By 3 and 4, the mapping α above is an isomorphism. Hence we have $\boldsymbol{Z}_{n} \simeq$ $\boldsymbol{Z}_{\ell} \times \boldsymbol{Z}_{m}$.

Quiz 7

Due: 10:10 a.m. June 4, 2008

Name:

Let G be a finite group of order p^{n}, where p is a prime number, and X a non-empty finite set. Let $\alpha: G \times X \rightarrow X((g, x) \mapsto g \cdot x)$ be a left action of G on X. For $x, y \in X$ we write $x \sim y$ if there is an element $g \in G$ such that $y=g \cdot x$. Let $C_{X}(G)=\{x \in X \mid$ $g \cdot x=x$ for all $g \in G\}$.

1. Show that the relation \sim on X is an equivalence relation.
2. For $x \in X$ let $[x]$ denote the equivalence class with respect to \sim containing x. (This is called an orbit and denoted by $G \cdot x$.) Show that $x \in C_{X}(G) \Leftrightarrow|[x]|=1$.
3. Show that $|[x]|$ is a power of p for all $x \in X$. (Hint: (5.2.1) or Proposition 7.3 in the lecture.)
4. Show that $|X| \equiv\left|C_{X}(G)\right| \quad(\bmod p)$.

Message: Any questions or requests?

Solutions to Quiz 7

Let G be a finite group of order p^{n}, where p is a prime number, and X a non-empty finite set. Let $\alpha: G \times X \rightarrow X((g, x) \mapsto g \cdot x)$ be a left action of G on X. For $x, y \in X$ we write $x \sim y$ if there is an element $g \in G$ such that $y=g \cdot x$. Let $C_{X}(G)=\{x \in X \mid$ $g \cdot x=x$ for all $g \in G\}$.

Since α is a left action, it satisfies; (i) $g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} g_{2}\right) \cdot x$ for all $g_{1}, g_{2} \in G$ and $x \in X$, (ii) $1 \cdot x=x$ for all $x \in X$, where 1 denotes the identity element of G.

1. Show that the relation \sim on X is an equivalence relation.

Sol. Since $1 \cdot x=x$ by (i), $x \sim x$. If $x \sim y$, there exists $g \in G$ such that $g \cdot x=y$. Now $g^{-1} \in G$ and

$$
x=1 \cdot x=\left(g^{-1} g\right) \cdot x=g^{-1} \cdot(g \cdot x)=g^{-1} y .
$$

Hence $y \sim x$. Suppose $x \sim y$ and $y \sim z$. Then there exists $g_{1}, g_{2} \in G$ such that $g_{1} \cdot x=y$ and $g_{2} \cdot y=z$. Then by (ii), $\left(g_{2} g_{1}\right) \cdot x=g_{2} \cdot\left(g_{1} \cdot x\right)=g_{2} \cdot y=z$. Since $g_{2} g_{1} \in G, x \sim z$. Hence \sim is an equivalence relation.
2. For $x \in X$ let $[x]$ denote the equivalence class with respect to \sim containing x. (This is called an orbit and denoted by $G \cdot x$.) Show that $x \in C_{X}(G) \Leftrightarrow|[x]|=1$.
Sol. Suppose $x \in C_{X}(G)$. Then $g \cdot x=x$ for all $g \in G$. Hence $[x]=\{x\}$. Conversely if $|[x]|=1$, then $[x]=\{x\}$ as $x \in[x]$. For all $g \in G, x \sim g \cdot x$. Since $g \cdot x \in[x]=\{x\}, g \cdot x=x$ and $x \in C_{X}(G)$.
3. Show that $|[x]|$ is a power of p for all $x \in X$. (Hint: (5.2.1) or Proposition 7.3 in the lecture.)
Sol. By (5.2.1), $|[x]|=\left(G: \operatorname{St}_{G}(x)\right)$, where $\operatorname{St}_{G}(x)=\{g \in G \mid g \cdot x=x\}$. Since $\operatorname{St}_{G}(x) \leq G,\left(G: \operatorname{St}_{G}(x)\right)$ divides $|G|=p^{n}$. Therefore $|[x]|$ is a power of p.
4. Show that $|X| \equiv\left|C_{X}(G)\right| \quad(\bmod p)$.

Sol. Let $\left[x_{1}\right],\left[x_{2}\right], \ldots\left[x_{m}\right]$ be distinct equivalence classes. By the previous problem, $\left|\left[x_{i}\right]\right|$ is a power of p and by $2,\left|\left[x_{i}\right]\right|=1$ if and only if $x_{i} \in C_{X}(G)$. Thus $x_{i} \notin C_{X}(G)$ if and only if $\left|\left[x_{i}\right]\right|$ is divisible by p. Suppose $\left|\left[x_{1}\right]\right|=\cdots\left|\left[x_{s}\right]\right|=1<$ $\left|\left[x_{s+1}\right]\right|, \ldots,\left|\left[x_{m}\right]\right|$. Then

$$
\begin{aligned}
|X| & =\left|\left[x_{1}\right]\right|+\cdots+\left|\left[x_{s}\right]\right|+\left|\left[x_{s+1}\right]\right|+\cdots+\left|\left[x_{m}\right]\right| \\
& \equiv\left|\left[x_{1}\right]\right|+\cdots+\left|\left[x_{s}\right]\right| \quad(\bmod p) \\
& \equiv s(\bmod p) \\
& \equiv\left|C_{X}(G)\right| \quad(\bmod p) .
\end{aligned}
$$

This proves the assertion.

Quiz 8

Due: 10:10 a.m. June 11, 2008

Name:

Let G be a finite group of order $p^{2} q$, where p and q are primes. Let $\operatorname{Syl}_{p}(G)$ denote the set of Sylow p-subgroups and $\operatorname{Syl}_{q}(G)$ Sylow q-subgroups, and $P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G)$.

1. Show that $\left|\operatorname{Syl}_{q}(G)\right|$ is either $1, p$ or p^{2}.
2. Suppose $\left|\operatorname{Syl}_{q}(G)\right|=p^{2}$. Then $P \triangleleft G$. [Hint: Show first that each Sylow q-subgroup contains $q-1$ elements of order q and there are $p^{2}(q-1)$ elements of order q. Show next that there are only p^{2} elements of order a power of p to conclude that $P \triangleleft G$.]
3. Suppose $\left|\operatorname{Syl}_{q}(G)\right|=p$. Show that $p>q$ and $P \triangleleft G$.
4. Suppose $\left|\operatorname{Syl}_{q}(G)\right|=p$ and $H=N_{G}(Q)$. Let R be a Sylow p-subgroup of H. Show that $R=Z(G)$. [Hint: Using the fact that $p>q$, show that $H \simeq R \times Q$. Use the fact that each Sylow p-subgroup is abelian.]
5. Show that G is not simple.

Solutions to Quiz 8

Let G be a finite group of order $p^{2} q$, where p and q are primes. Let $\operatorname{Syl}_{p}(G)$ denote the set of Sylow p-subgroups and $\operatorname{Syl}_{q}(G)$ Sylow q-subgroups, and $P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G)$.

1. Show that $\left|\operatorname{Syl}_{q}(G)\right|$ is either $1, p$ or p^{2}.

Sol. Let $\alpha: G \times \operatorname{Syl}_{q}(G) \rightarrow \operatorname{Syl}_{q}(G)\left(Q \mapsto g Q g^{-1}\right)$ be a left action. Then all Sylow q-subgroups are in one orbit by (5.3.8) and the length of the orbit $\operatorname{Syl}_{q}(G)$ of Q is $\left|G: \mathrm{St}_{G}(Q)\right|$. Moreover

$$
\operatorname{St}_{G}(Q)=\{g \in G \mid g \cdot Q=Q\}=\left\{g \in G \mid g Q g^{-1}=Q\right\}=N_{G}(Q) \geq Q
$$

By (4.1.3) in the textbook, $\left|\operatorname{Syl}_{q}(G)\right|=\left|G: N_{G}(Q)\right|| | G: Q \mid=p^{2}$. Therefore, it is either $1, p$ or p^{2}.
2. Suppose $\left|\operatorname{Syl}_{q}(G)\right|=p^{2}$. Then $P \triangleleft G$. [Hint: Show first that each Sylow q-subgroup contains $q-1$ elements of order q and there are $p^{2}(q-1)$ elements of order q. Show next that there are only p^{2} elements of order a power of p to conclude that $P \triangleleft G$.]
Sol. By assumption, $N_{G}(Q)=Q$. Let $x \in G-Q$. Then $Q \cap x Q x^{-1}=1$ and all elements of order q is in one of the p^{2} Sylow q-subgroups. Since non identity element of each Sylow q-subgroup is of order q, there are altogether $p^{2}(q-1)$ element of order q. Hence $p^{2} q-p^{2}(q-1)=p^{2}$ is exactly the number of elements in $P, g P g^{-1}=P$ for all $g \in G$, as there are no elements of order q in $g P g^{-1}$. Therefore $P \triangleleft G$.
3. Suppose $\left|\operatorname{Syl}_{q}(G)\right|=p$. Show that $p>q$ and $P \triangleleft G$.

Sol. \quad Since $p=\left|\operatorname{Syl}_{q}(G)\right| \equiv 1 \quad(\bmod q), q \mid p-1$ and $p>q$. Now $\left|\operatorname{Syl}_{p}(G)\right|=\mid G$: $N_{G}(P)| | q$ and $\left|\operatorname{Syl}_{p}(G)\right| \equiv 1 \quad(\bmod p)$, we have $\left|\operatorname{Syl}_{p}(G)\right|=1$. Thus $P \triangleleft G$.
4. Suppose $\left|\operatorname{Syl}_{q}(G)\right|=p$ and $H=N_{G}(Q)$. Let R be a Sylow p-subgroup of H. Show that $R=Z(G)$. [Hint: Using the fact that $p>q$, show that $H \simeq R \times Q$. Use the fact that each Sylow p-subgroup is abelian.]
Sol. $|H|=p q$. Hence $Q \triangleleft H$ and $H=R Q$. Since $\left|\operatorname{Syl}_{p}(H)\right|=\left|H: N_{H}(R)\right| \mid q$ and $\left|\operatorname{Syl}_{p}(H)\right| \equiv 1 \quad(\bmod p)$, we have $\left|\operatorname{Syl}_{p}(H)\right|=1$ as $p>q$. Thus $H \simeq R \times Q$. In particular $C_{G}(R) \supset Q$. Since every Sylow p-subgroup is of order p^{2} and hence abelian, a Sylow subgroup containing R is contained in $C_{G}(R)$. Thus $\left|C_{G}(R)\right|$ is divisible by $p^{2} q=|G|$ and $C_{G}(R)=G$. This proves $R \subseteq Z(G)$. Since $N_{G}(Q)=$ $H<G, p^{2} \nmid|Z(G)|$ and $q \nmid|Z(G)|$, we have $Z(G)=R$.
5. Show that G is not simple.

Sol. If $\left|\operatorname{Syl}_{q}(G)\right|=1$, then $1 \neq Q \triangleleft G$. Other cases are treated above. In particular, if Q is not normal in G, then P is normal in G.

