Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 5 & 2 & 6 & 7 & 8 & 3 \end{pmatrix}$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 5 & 8 & 3 & 7 & 6 & 2 \end{pmatrix}$.

1. Compute $\pi\sigma\pi^{-1}$.

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles. (Do you recognize some similarity between σ and $\pi \sigma \pi^{-1}$?)

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a shortest?)

4. Express each of π and σ as a product of adjacent transpositions $(1, 2), (2, 3), \ldots, (7, 8)$. (Is it a shortest?)

5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Message: What do you expect from this course? Any requests?

April 21, 2008

Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 5 & 2 & 6 & 7 & 8 & 3 \end{pmatrix}$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 5 & 8 & 3 & 7 & 6 & 2 \end{pmatrix}$.

1. Compute $\pi\sigma\pi^{-1}$.

Sol.

 $\begin{aligned} \pi \sigma \pi^{-1} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 5 & 2 & 6 & 7 & 8 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 5 & 8 & 3 & 7 & 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 4 & 5 & 2 & 6 & 7 & 8 & 3 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 6 & 5 & 8 & 7 \end{pmatrix}. \end{aligned}$

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles. (Do you recognize some similarity between σ and $\pi \sigma \pi^{-1}$?)

Sol.

$$\begin{aligned} \sigma &= (1,4,8,2)(3,5)(6,7), \\ \pi \sigma \pi^{-1} &= (1,2,3,4)(5,6)(7,8) \\ (&= (\pi(1),\pi(4),\pi(8),\pi(2))(\pi(3),\pi(5))(\pi(6),\pi(7)) \end{aligned}$$

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a shortest?)

Sol.

$$\pi = (2,4)(3,8)(3,7)(3,6)(3,5) (= (2,4)(3,5)(5,6)(6,7)(7,8)), \sigma = (1,2)(1,8)(1,4)(3,5)(6,7) (= (1,4)(4,8)(8,2)(3,5)(6,7)).$$

Use the formula in Corollary 3.1.4. Both of these are shortest.

4. Express each of π and σ as a product of adjacent transpositions $(1, 2), (2, 3), \ldots, (7, 8)$. (Is it a shortest?)

Sol.

$$\pi = (3,4)(4,5)(5,6)(6,7)(7,8)(2,3)(3,4)$$

$$\sigma = (7,8)(6,7)(3,4)(4,5)(5,6)(2,3)(3,4)(4,5)(5,6)(7,8)(6,7)(7,8)(1,2))$$

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The minimal number of adjacent transpositions required to express each permutation equals the number ℓ of the permutation to be calculated in the next problem. Can you prove this fact?

5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Sol. Since $\ell(\pi) = 7$, $\operatorname{sign}(\pi) = (-1)^7 = -1$. Similarly since $\ell(\sigma) = (-1)^{13}$, $\operatorname{sign}(\pi) = (-1)^{13} = -1$. Since π is the product of 3 cycles including one 1 cycle, $\operatorname{sign}(\pi) = (-1)^{8-3} = -1$ by Cauchy's Formula in (3.1.9). Similarly σ is the product of 3 cycles, $\operatorname{sign}(\sigma) = (-1)^{8-3} = -1$.

Quiz 2			Due:	10:10	a.m.	April	28,	2008
Division:	ID#:	Name:						

1. Let \mathbf{R} be the set of real numbers, and $G = \mathbf{R} \setminus \{-1\} = \{x \mid (x \in \mathbf{R}) \land (x \neq -1)\}$. For $x, y \in G$, let x * y = xy + x + y. Show that (G, *) is a group. Do not forget to check that * defines a binary operation on G.

2. Let (G, \circ) is a group with the identity element *e*. Suppose that $x \circ x = e$ for all $x \in G$. Show that (G, \circ) is an abelian group, i.e., $x \circ y = y \circ x$ for all $x, y \in G$.

Message: Any questions, comments or requests?

1. Let **R** be the set of real numbers, and $G = \mathbf{R} \setminus \{-1\} = \{x \mid (x \in \mathbf{R}) \land (x \neq -1)\}$. For $x, y \in G$, let x * y = xy + x + y. Show that (G, *) is a group. Do not forget to check that * defines a binary operation on G.

Sol. Note that x * y = (x + 1)(y + 1) - 1.

Clearly $x * y \in \mathbf{R}$. Suppose -1 = x * y = (x+1)(y+1) - 1. Then (x+1)(y+1) = 0. Since $x \neq -1$ and $y \neq -1$, this is absurd. Hence $x * y \in G$ for all $x, y \in G$. Let $x, y, z \in G$. Then

$$(x*y)*z = ((x+1)(y+1)-1)*z = (x+1)(y+1)(z+1)-1 = x*((y+1)(z+1)-1) = x*(y*z).$$

Since x * 0 = (x + 1) - 1 = x = 0 * x, 0 plays as the identity element in G. Let $x \in G$. Then

$$x * \left(\frac{1}{x+1} - 1\right) = (x+1)\frac{1}{x+1} - 1 = 0 = \frac{1}{x+1}(x+1) - 1 = \left(\frac{1}{x+1} - 1\right) * x.$$

Hence x has its inverse. Note that as $x \neq -1$, $\frac{1}{x+1} - 1 \in G$. Therefore (G, *) is a group.

2. Let (G, \circ) is a group with the identity element e. Suppose that $x \circ x = e$ for all $x \in G$. Show that (G, \circ) is an abelian group, i.e., $x \circ y = y \circ x$ for all $x, y \in G$. Sol. By applications of the general associativity law, we omit parentheses. Let $x, y \in G$. Since $x \circ y \in G$, $x \circ y \circ x \circ y = e$, and $x \circ x = y \circ y = e$. Hence

$$y \circ x = y \circ x \circ e = y \circ x \circ x \circ y \circ x \circ y = y \circ e \circ y \circ x \circ y = y \circ y \circ x \circ y = e \circ x \circ y = x \circ y.$$

Therefore, (G, \circ) is an abelian group.

Quiz 3 Due: 10:10 a.m. May 7, 2008 Division: ID#:

Let $\mathbf{Z}_{18} = \{[0], [1], \dots, [17]\}$ be a group with addition as its binary operation, and \mathbf{Z}_{18}^* be a group with multiplication as its binary operation. Recall that \mathbf{Z}_{18}^* is the set of invertible elements in \mathbf{Z}_{18} with respect to multiplication.

1. Find all elements in $\langle [3] \rangle$, i.e., the subgroup generated by [3], and the order of [3] in \mathbb{Z}_{18} .

2. Find all elements $[a] \in \mathbf{Z}_{18}$ such that $\langle [3] \rangle = \langle [a] \rangle$.

3. Find all elements in Z_{18}^* .

4. Show that $[a]^6 = [1]$ for all $[a] \in \mathbb{Z}_{18}^*$.

5. Determine whether or not Z_{18}^* is a cyclic group.

Message: Any requests or questions?

Let $\mathbf{Z}_{18} = \{[0], [1], \dots, [17]\}$ be a group with addition as its binary operation, and \mathbf{Z}_{18}^* be a group with multiplication as its binary operation. Recall that \mathbf{Z}_{18}^* is the set of invertible elements in \mathbf{Z}_{18} with respect to multiplication.

1. Find all elements in $\langle [3] \rangle$, i.e., the subgroup generated by [3], and the order of [3] in \mathbb{Z}_{18} .

Sol. Since [3] + [3] = [6], [3] + [3] + [3] = [6] + [3] = [9], [3] + [3] + [3] + [3] = [12]and [3] + [3] + [3] + [3] + [3] + [3] = [0], we have the following by Proposition 3.4 (3.3.6).

$$\langle [3] \rangle = \{ [0], [3], [6], [9], [12], [15] \}$$

and hence the order of [3], denoted by $|[3]| = |\langle [3] \rangle| = 6$.

(Note that when the operation is addition, we customarily denote [3] + [3] = 2[3], [3] + [3] = 3[3] instead of using power notation.)

2. Find all elements $[a] \in \mathbb{Z}_{18}$ such that $\langle [3] \rangle = \langle [a] \rangle$.

Sol. If the condition is satisfied, $[a] \in \langle [3] \rangle = \{[0], [3], [6], [9], [12], [15]\}$. Check one by one we find [a] = [3], or [15].

(Note that if [a] = m[3], then the greatest common divisor of m and 6 has to be 1 and we have m = 1 or 5 if $0 \le m \le 5$. See (4.1.7), (4.1.8).)

3. Find all elements in Z_{18}^* .

Sol. If [a][b] = [ab] = [1] in \mathbb{Z}_{18} , there exists an integer m such that ab - 1 = 18m. Hence ab - 18m = 1. If d is a common divisor of a and 18, then it must divide 1. Hence if [a] is invertible in \mathbb{Z}_{18} with respect to multiplication, a is coprime to 18. Conversely if a is coprime to 18, there are integers x and y satisfying ax + 18y = 1. Then [a][x] = [ax] = [1 - 18y] = [1] and [a] is invertible. Therefore

$$Z_{18}^* = \{[1], [5], [7], [11], [13], [17]\}.$$

Therefore $|Z_{18}^*| = 6$.

4. Show that $[a]^6 = [1]$ for all $[a] \in \mathbf{Z}_{18}^*$.

Sol. $[5]^2 = [5][5] = [25] = [7], [5]^3 = [5][5][5] = [7][5] = [35] = [17] = [-1], [5]^4 = [5][5][5][5][5] = [-1][5] = [-5] = [13], [5]^5 = [5][5][5][5][5] = [-7] = [11], [5]^6 = [5][5][5][5][5][5][5] = [1].$ Hence all elements of \mathbf{Z}^*18 appear as a power of [5] and $[5]^6 = [1]$. Thus $[a] = [5]^i$ for some i and $[a]^6 = ([5]^i)^6 = ([5]^6)^i = [1]$. This proves the assertion.

5. Determine whether or not \boldsymbol{Z}_{18}^* is a cyclic group.

Sol. By the previous problem, we have shown that

$$\boldsymbol{Z}_{18}^* = \{ [5]^n \mid n \in \boldsymbol{Z} \} = \langle [5] \rangle.$$

Thus \boldsymbol{Z}_{18}^* is a cyclic group.

Quiz 4

Due: 10:10 a.m. May 14, 2008

Division: ID#:

Name:

1. Let G be a group and H a nonempty subset of G. Show that if $H^{-1}H \subseteq H$, then $H \leq G$.

2. Let H be a subgroup of a group G, and $a, b \in G$. Show the following.

(a)
$$H = H^{-1}$$
.

(b) $H^{-1}H = H$.

(c) If $a^{-1}b \in H$, then aH = bH.

(d) If aH = bH, then $a^{-1}b \in H$.

1. Let G be a group and H a nonempty subset of G. Show that if $H^{-1}H \subseteq H$, then $H \leq G$.

Sol. (Since *H* is nonempty, it suffices to show that $xy \in H$ and $x^{-1} \in H$ for all $x, y \in H$.)

Since *H* is nonempty, there is an element $x \in H$. Hence $1 = x^{-1}x \in H^{-1}H \subseteq H$. Thus $x^{-1} = x^{-1}1 \in H^{-1}H \subseteq H$. Let $x, y \in H$. Since $x^{-1} \in H$, $xy = (x^{-1})^{-1}y \in H^{-1}H \subseteq H$. Therefore $xy \in H$ and $x^{-1} \in H$ for all $x, y \in H$.

- 2. Let H be a subgroup of a group G, and $a, b \in G$. Show the following.
 - (a) $H = H^{-1}$. **Sol.** Since H is a subgroup, $H^{-1} \subseteq H$. Let $h \in H$. Since H is a subgroup of $G, h^{-1} \in H$. Therefore $h = (h^{-1})^{-1} \in H^{-1}$ and $H \subseteq H^{-1}$. Thus $H = H^{-1}$.
 - (b) $H^{-1}H = H$.

Sol. Let $x, y \in H$. Since H is a subgroup of G, $x^{-1} \in H$ and $x^{-1}y \in H$. Hence $H^{-1}H \subseteq H$. Since H is a subgroup of G, $1 \in H$. Therefore $h = 1^{-1}h \in H^{-1}H$ and $H \subseteq H^{-1}H$. Thus $H^{-1}H = H$.

(c) If $a^{-1}b \in H$, then aH = bH. Sol.

$$aH = bb^{-1}aH = b(a^{-1}b)^{-1}H \subseteq bH^{-1}H = bH \subseteq aa^{-1}bH \subseteq aHH \subseteq aH.$$

Hence aH = bH.

(d) If aH = bH, then $a^{-1}b \in H$. Sol.

$$a^{-1}b = a^{-1}b1 \in a^{-1}bH = a^{-1}aH = H$$

Therefore $a^{-1}b \in H$.

Quiz 5

Division: ID#: Name:

Let $G = S_4$, the symmetric group of degree 4, $V = \{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}, K = \{1, (1, 2)(3, 4)\}, \text{ and } H = \langle (1, 2), (1, 3) \rangle$. Show the following.

1. $K \triangleleft V$, i.e., K is a normal subgroup of V.

2. $V \triangleleft G$, i.e., V is a normal subgroup of G.

3. K is not a normal subgroup of G.

4. G/V is not an abelian group.

5. G = VH and $V \cap H = 1$.

May 21, 2008

Let $G = S_4$, the symmetric group of degree 4, $V = \{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}, K = \{1, (1, 2)(3, 4)\}, \text{ and } H = \langle (1, 2), (1, 3) \rangle$. Show the following.

1. $K \triangleleft V$, i.e., K is a normal subgroup of V.

Sol. Let $\sigma \in V$. Then clearly $\sigma^2 = 1$. $\sigma^{-1} = \sigma$.

$$\begin{array}{rcl} (1,2)(3,4)(1,3)(2,4) &=& (1,4)(2,3) = (1,3)(2,4)(1,2)(3,4), \\ (1,2)(3,4)(1,4)(2,3) &=& (1,3)(2,4) = (1,4)(2,3)(1,2)(3,4), \\ (1,3)(2,4)(1,4)(2,3) &=& (1,2)(3,4) = (1,4)(2,3)(1,3)(2,4). \end{array}$$

Hence $V \leq G$, and V is abelian. Since $K = \langle (1,2)(3,4) \rangle$, K is a subgroup of V. Since V is abelian, K is a normal subgroup of V.

2. $V \triangleleft G$, i.e., V is a normal subgroup of G.

Sol. First note that V contains all permutations of type (a,b)(c,d) in S_4 . Let $\sigma \in S_4$. Then

$$\sigma(a,b)(c,d)\sigma^{-1} = (\sigma(a),\sigma(b))(\sigma(c),\sigma(d)).$$

Hence $\sigma \pi \sigma^{-1} \in V$ for all $1 \neq \pi \in V$. It is clear that $\sigma 1 \sigma^{-1} = 1 \in V$, and V is a normal subgroup of G.

- 3. K is not a normal subgroup of G.
 Sol. Since (1,3)(1,2)(3,4)(1,3) = (2,3)(1,4) ∉ K, K is not normal in G.
- 4. G/V is not an abelian group.

Sol. $(1,2)(2,3)(1,2)(2,3) = (1,2,3)(1,2,3) = (1,3,2) \notin V$. Hence $G' \nleq V$ and G/V is not abelian.

By our computation above,

$$((1,2)V)((2,3)V)((1,2)V)^{-1}((2,3)V)^{-1} = (1,3,2)V \neq V$$

Hence $((1,2)V)((2,3)V) \neq ((2,3)V)((1,2)V)$.

5. G = VH and $V \cap H = 1$.

Sol. Since $H = \{1, (1, 2), (2, 3), (1, 3), (1, 2, 3), (1, 3, 2)\}, V \cap H = 1$ part is clear. Since

$$|VH| = |V||H|/|V \cap H| = 24 = |G|.$$

Therefore VH = G.

Let $x, y \in H$. If Vx = Vy, then $yx^{-1} \in V \cap H = 1$. Hence distinct elements in H belong to distinct cosets in G/V. Hence |VH| = |V||H| = 24. Therefore G = VH as $VH \subseteq G$.

Quiz 6 Due: 10:00 a.m. May 28, 2008 Division: ID#: Name:

Let *m* and *n* be positive integers. Let π be an assignment from \mathbb{Z}_n to \mathbb{Z}_m defined by $[a]_n \mapsto [a]_m$.

1. Show that if π is a mapping from \mathbf{Z}_n to \mathbf{Z}_m , then $m \mid n$, i.e., there exists $\ell \in \mathbf{Z}$ such that $n = \ell m$.

2. Suppose $\ell \mid n$ and $m \mid n$. Then a mapping $\alpha : \mathbb{Z}_n \to \mathbb{Z}_\ell \times \mathbb{Z}_m$ $([a]_n \mapsto ([a]_\ell, [a]_m)$ is a homomorphism.

3. Show that the mapping α above is injective if and only if the least common multiple of ℓ and m is n.

4. Show that the mapping α above is surjective if and only if the greatest common divisor of ℓ and m is 1.

5. Show that if $n = \ell m$, and ℓ and m are coprime integers., i.e., $gcd(\ell, m) = 1$, then $\mathbf{Z}_n \simeq \mathbf{Z}_\ell \times \mathbf{Z}_m$.

Let *m* and *n* be positive integers. Let π be an assignment from \mathbb{Z}_n to \mathbb{Z}_m defined by $[a]_n \mapsto [a]_m$.

1. Show that if π is a mapping from \mathbf{Z}_n to \mathbf{Z}_m , then $m \mid n$, i.e., there exists $\ell \in \mathbf{Z}$ such that $n = \ell m$.

Sol. Suppose π is a mapping. Since $[n]_n = [0]_n$, $[n]_m = [0]_m$. Hence $m \mid n$.

Conversely suppose $m \mid n$. If $[a]_n = [b]_n$, then $n \mid a - b$. Since $m \mid n, m \mid a - b$ and $[a]_m = [b]_m$. Therefore π is a well-defined mapping.

2. Suppose $\ell \mid n$ and $m \mid n$. Then a mapping $\alpha : \mathbb{Z}_n \to \mathbb{Z}_\ell \times \mathbb{Z}_m$ $([a]_n \mapsto ([a]_\ell, [a]_m)$ is a homomorphism.

Sol. By 1, the assignments $[a]_n \mapsto [a]_\ell$ and $[a]_n \mapsto [a]_m$ are mappings. Hence α is a well-defined mapping. Now

$$\alpha([a]_n + [b]_n) = \alpha([a+b]_n) = ([a+b]_\ell, [a+b]_m) = ([a]_\ell + [b]_\ell, [a]_m + [b]_m)$$

= $([a]_\ell, [a]_m) + ([b]_\ell, [b]_m) = \alpha([a]_n) + \alpha([b]_n).$

Hence α is a homomorphism.

3. Show that the mapping α above is injective if and only if the least common multiple of ℓ and m is n.

Sol. Suppose α is injective. Then $\alpha([a]_n) = ([a]_\ell, [a]_m) = ([0]_\ell, [0]_m)$ implies $[a]_n = [0]$. Hence $m \mid a$ and $\ell \mid a$ implies $n \mid a$. By assumption n is a common multiple of ℓ and m. Let a be a common multiple of ℓ and m. Then clearly $\ell \mid a$ and $m \mid a$. Hence $n \mid a$. Thus n is the least common multiple of ℓ and m.

Suppose *n* is the least common multiple of ℓ and *m*. If *a* is a common multiple of ℓ and *m*, then $n \mid a$. Hence we have $\alpha([a]_n) = ([a]_\ell, [a]_m) = ([0]_\ell, [0]_m)$ implies $[a]_n = [0]_n$, and α is injective.

4. Show that the mapping α above is surjective if and only if the greatest common divisor of ℓ and m is 1.

Sol. Suppose α is surjective. Then there exists $[a]_n$ such that $[a]_{\ell} = [1]_{\ell}$ and $[a]_m = [0]_m$. Hence there are integers s and t such that $a = ms = \ell t + 1$. Hence $ms - \ell t = 1$. If d is the greatest common divisor of ℓ and m, then d divides $ms - \ell t = 1$. Hence d = 1.

Conversely if ℓ and m are coprime each other, there are integers s and t such that $s\ell + tm = 1$. (To prove this fact consider $\langle \ell, m \rangle$ in \mathbb{Z} . Since \mathbb{Z} is cyclic and every subgroup of a cyclic group is cyclic, there exists a nonnegative integer d such that $\langle \ell, m \rangle = \langle d \rangle$. Since $\ell, m \in \langle \ell, m \rangle$, $d \mid \ell$ and $d \mid m$. Hence d = 1. Since $d \in \langle \ell, m \rangle$, there exist integers s, t such that $1 = s\ell + tm$.) Now let x and y are arbitrary integers. Then $[xtm + ys\ell]_{\ell} = [xtm]_{\ell} = [x(1 - s\ell)]_{\ell} = [x]_{\ell}$, and $[xtm + ys\ell]_m = [ys\ell]_m = [y(1 - tm)]_m = [y]_m$ and α is surjective.

5. Show that if $n = \ell m$, and ℓ and m are coprime integers., i.e., $gcd(\ell, m) = 1$, then $\mathbf{Z}_n \simeq \mathbf{Z}_\ell \times \mathbf{Z}_m$.

Sol. By 3 and 4, the mapping α above is an isomorphism. Hence we have $\mathbf{Z}_n \simeq \mathbf{Z}_{\ell} \times \mathbf{Z}_m$.

May 28, 2008

Quiz 7			Due: 10:10 a.m.	June 4, 2008
Division:	ID#:	Name:		

Let G be a finite group of order p^n , where p is a prime number, and X a non-empty finite set. Let $\alpha : G \times X \to X$ $((g, x) \mapsto g \cdot x)$ be a left action of G on X. For $x, y \in X$ we write $x \sim y$ if there is an element $g \in G$ such that $y = g \cdot x$. Let $C_X(G) = \{x \in X \mid g \cdot x = x \text{ for all } g \in G\}$.

1. Show that the relation \sim on X is an equivalence relation.

2. For $x \in X$ let [x] denote the equivalence class with respect to \sim containing x. (This is called an *orbit* and denoted by $G \cdot x$.) Show that $x \in C_X(G) \Leftrightarrow |[x]| = 1$.

3. Show that |[x]| is a power of p for all $x \in X$. (Hint: (5.2.1) or Proposition 7.3 in the lecture.)

4. Show that $|X| \equiv |C_X(G)| \pmod{p}$.

June 4, 2008

Let G be a finite group of order p^n , where p is a prime number, and X a non-empty finite set. Let $\alpha : G \times X \to X$ $((g, x) \mapsto g \cdot x)$ be a left action of G on X. For $x, y \in X$ we write $x \sim y$ if there is an element $g \in G$ such that $y = g \cdot x$. Let $C_X(G) = \{x \in X \mid g \cdot x = x \text{ for all } g \in G\}$.

Since α is a left action, it satisfies; (i) $g_1 \cdot (g_2 \cdot x) = (g_1g_2) \cdot x$ for all $g_1, g_2 \in G$ and $x \in X$, (ii) $1 \cdot x = x$ for all $x \in X$, where 1 denotes the identity element of G.

1. Show that the relation \sim on X is an equivalence relation.

Sol. Since $1 \cdot x = x$ by (i), $x \sim x$. If $x \sim y$, there exists $g \in G$ such that $g \cdot x = y$. Now $g^{-1} \in G$ and

$$x = 1 \cdot x = (g^{-1}g) \cdot x = g^{-1} \cdot (g \cdot x) = g^{-1}y.$$

Hence $y \sim x$. Suppose $x \sim y$ and $y \sim z$. Then there exists $g_1, g_2 \in G$ such that $g_1 \cdot x = y$ and $g_2 \cdot y = z$. Then by (ii), $(g_2g_1) \cdot x = g_2 \cdot (g_1 \cdot x) = g_2 \cdot y = z$. Since $g_2g_1 \in G$, $x \sim z$. Hence \sim is an equivalence relation.

2. For $x \in X$ let [x] denote the equivalence class with respect to \sim containing x. (This is called an *orbit* and denoted by $G \cdot x$.) Show that $x \in C_X(G) \Leftrightarrow |[x]| = 1$.

Sol. Suppose $x \in C_X(G)$. Then $g \cdot x = x$ for all $g \in G$. Hence $[x] = \{x\}$. Conversely if |[x]| = 1, then $[x] = \{x\}$ as $x \in [x]$. For all $g \in G$, $x \sim g \cdot x$. Since $g \cdot x \in [x] = \{x\}, g \cdot x = x$ and $x \in C_X(G)$.

3. Show that |[x]| is a power of p for all $x \in X$. (Hint: (5.2.1) or Proposition 7.3 in the lecture.)

Sol. By (5.2.1), $|[x]| = (G : \operatorname{St}_G(x))$, where $\operatorname{St}_G(x) = \{g \in G \mid g \cdot x = x\}$. Since $\operatorname{St}_G(x) \leq G$, $(G : \operatorname{St}_G(x))$ divides $|G| = p^n$. Therefore |[x]| is a power of p.

4. Show that $|X| \equiv |C_X(G)| \pmod{p}$.

Sol. Let $[x_1], [x_2], \ldots, [x_m]$ be distinct equivalence classes. By the previous problem, $|[x_i]|$ is a power of p and by 2, $|[x_i]| = 1$ if and only if $x_i \in C_X(G)$. Thus $x_i \notin C_X(G)$ if and only if $|[x_i]|$ is divisible by p. Suppose $|[x_1]| = \cdots |[x_s]| = 1 < |[x_{s+1}]|, \ldots, |[x_m]|$. Then

$$|X| = |[x_1]| + \dots + |[x_s]| + |[x_{s+1}]| + \dots + |[x_m]|$$

$$\equiv |[x_1]| + \dots + |[x_s]| \pmod{p}$$

$$\equiv s \pmod{p}$$

$$\equiv |C_X(G)| \pmod{p}.$$

This proves the assertion.

Quiz 8 Due: 10:10 a.m. June 11, 2008 **Division:** ID#: Name:

Let G be a finite group of order p^2q , where p and q are primes. Let $Syl_p(G)$ denote the set of Sylow *p*-subgroups and $\operatorname{Syl}_{q}(G)$ Sylow *q*-subgroups, and $P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G)$.

1. Show that $|Syl_q(G)|$ is either 1, p or p^2 .

2. Suppose $|Syl_q(G)| = p^2$. Then $P \triangleleft G$. [Hint: Show first that each Sylow q-subgroup contains q-1 elements of order q and there are $p^2(q-1)$ elements of order q. Show next that there are only p^2 elements of order a power of p to conclude that $P \triangleleft G$.]

3. Suppose $|Syl_a(G)| = p$. Show that p > q and $P \lhd G$.

4. Suppose $|Syl_a(G)| = p$ and $H = N_G(Q)$. Let R be a Sylow p-subgroup of H. Show that R = Z(G). [Hint: Using the fact that p > q, show that $H \simeq R \times Q$. Use the fact that each Sylow *p*-subgroup is abelian.]

5. Show that G is not simple.

June 11, 2008

Let G be a finite group of order p^2q , where p and q are primes. Let $\operatorname{Syl}_p(G)$ denote the set of Sylow p-subgroups and $\operatorname{Syl}_q(G)$ Sylow q-subgroups, and $P \in \operatorname{Syl}_p(G)$, $Q \in \operatorname{Syl}_q(G)$.

1. Show that $|Syl_q(G)|$ is either 1, p or p^2 .

Sol. Let $\alpha : G \times \operatorname{Syl}_q(G) \to \operatorname{Syl}_q(G)(Q \mapsto gQg^{-1})$ be a left action. Then all Sylow q-subgroups are in one orbit by (5.3.8) and the length of the orbit $\operatorname{Syl}_q(G)$ of Q is $|G : \operatorname{St}_G(Q)|$. Moreover

$$St_G(Q) = \{g \in G \mid g \cdot Q = Q\} = \{g \in G \mid gQg^{-1} = Q\} = N_G(Q) \ge Q.$$

By (4.1.3) in the textbook, $|Syl_q(G)| = |G : N_G(Q)| | |G : Q| = p^2$. Therefore, it is either 1, p or p^2 .

- 2. Suppose $|\operatorname{Syl}_q(G)| = p^2$. Then $P \triangleleft G$. [Hint: Show first that each Sylow q-subgroup contains q-1 elements of order q and there are $p^2(q-1)$ elements of order q. Show next that there are only p^2 elements of order a power of p to conclude that $P \triangleleft G$.] Sol. By assumption, $N_G(Q) = Q$. Let $x \in G - Q$. Then $Q \cap xQx^{-1} = 1$ and all elements of order q is in one of the p^2 Sylow q-subgroups. Since non identity element of each Sylow q-subgroup is of order q, there are altogether $p^2(q-1)$ element of order q. Hence $p^2q - p^2(q-1) = p^2$ is exactly the number of elements in P, $gPg^{-1} = P$ for all $q \in G$, as there are no elements of order q in qPq^{-1} . Therefore $P \triangleleft G$.
- 3. Suppose $|\operatorname{Syl}_q(G)| = p$. Show that p > q and $P \lhd G$. **Sol.** Since $p = |\operatorname{Syl}_q(G)| \equiv 1 \pmod{q}$, $q \mid p-1$ and p > q. Now $|\operatorname{Syl}_p(G)| = |G : N_G(P)| \mid q$ and $|\operatorname{Syl}_p(G)| \equiv 1 \pmod{p}$, we have $|\operatorname{Syl}_p(G)| = 1$. Thus $P \lhd G$.
- 4. Suppose $|\text{Syl}_q(G)| = p$ and $H = N_G(Q)$. Let R be a Sylow p-subgroup of H. Show that R = Z(G). [Hint: Using the fact that p > q, show that $H \simeq R \times Q$. Use the fact that each Sylow p-subgroup is abelian.]

Sol. |H| = pq. Hence $Q \triangleleft H$ and H = RQ. Since $|\operatorname{Syl}_p(H)| = |H : N_H(R)| | q$ and $|\operatorname{Syl}_p(H)| \equiv 1 \pmod{p}$, we have $|\operatorname{Syl}_p(H)| = 1$ as p > q. Thus $H \simeq R \times Q$. In particular $C_G(R) \supset Q$. Since every Sylow *p*-subgroup is of order p^2 and hence abelian, a Sylow subgroup containing *R* is contained in $C_G(R)$. Thus $|C_G(R)|$ is divisible by $p^2q = |G|$ and $C_G(R) = G$. This proves $R \subseteq Z(G)$. Since $N_G(Q) =$ $H < G, p^2 \nmid |Z(G)|$ and $q \nmid |Z(G)|$, we have Z(G) = R.

5. Show that G is not simple.

Sol. If $|Syl_q(G)| = 1$, then $1 \neq Q \triangleleft G$. Other cases are treated above. In particular, if Q is not normal in G, then P is normal in G.