
Quiz 1 Due: 10:00 a.m. April 18, 2007

Division: ID#: Name:

1. Let d and e be integers satistying d | e and e | d. Show that e = d or −d.

2. Let a1, a2, . . . , an be integers and e a common divisor of a1, a2, . . . , an, i.e., e | ai for
i = 1, 2, . . . , n. Show that the following conditions are equivalent.

(a) c | ai for i = 1, 2, . . . , n ⇒ c | e.

(b) There exist integers x1, . . . , xn such that e = a1x1 + a2x2 + · · · + anxn.

3. Find all elements [a] ∈ Z24 such that there exists [x] ∈ Z24 satisfying [a][x] = [1].

Message: What do you expect from this course? Any requests?



Solutions to Quiz 1 April 18, 2007

1. Let d and e be integers satistying d | e and e | d. Show that e = d or −d.

Sol. Since d | e and e | d, there exist integers a and b such that e = ad, d = be.
Hence if one of d or e is zero, then both are zero, and e = d or −d in this case.
Suppose both d and e are nonzero. Since e = ad, d = be implies e = ad = abe,
1 = ab. Since both a and b are integers, we have a = 1 or −1. Since e = ad, e = d
or e = −d.

2. Let a1, a2, . . . , an be integers and e a common divisor of a1, a2, . . . , an, i.e., e | ai for
i = 1, 2, . . . , n. Show that the following conditions are equivalent.

(a) c | ai for i = 1, 2, . . . , n ⇒ c | e.

(b) There exist integers x1, . . . , xn such that e = a1x1 + a2x2 + · · · + anxn.

Sol. Let d = gcd{a1, a2, . . . , an}. Then d ≥ 0 and d satisfies d | ai for i =
1, 2, . . . , n, and (a), (b).

Suppose e satisfies (a). Then d | e by (a), and e | d as d satisfies (a) by replacing e
by d. Hence by 1, e = d or −d. Since d satisfies (b), e satisfies (b) as well.

Suppose e satisfies (b). Let c be an integer satisfying c | ai for i = 1, 2, . . . , n. Since
e has an expression e = a1x1 + a2x2 + · · · + anxn, c | e. This shows (a).

The above problem shows that the greatest common divisor of a1, a2, . . . , an can
also be defined as a nonnegative common divisor of a1, a2, . . . , an satisfying (b).

3. Find all elements [a] ∈ Z24 such that there exists [x] ∈ Z24 satisfying [a][x] = [1].

Sol. Let U(Z24) = {[a] ∈ Z24 | There exists [x] ∈ Z24 such that [a][x] = [1]}.
Since [1] = [a][x] = [ax] by the definition of multiplication in Z24, ax ≡ 1 (mod 24).
Hence there exists an integer y such that ax − 1 = 24y. Hence ax − 24y = 1.
Let d = gcd{a, 24}. Then d | ax − 24y = 1. So d = 1. On the other hand,
if gcd{a, 24} = 1, there exist integers x and y such that ax + 24y = 1. Thus
[a][x] = [1 − 24y] = [1]. Hence [a] ∈ U(Z24). Therefore

U(Z24) = {[a] | gcd{a, 24} = 1, a ∈ Z} = {[1], [5], [7], [11], [13], [17], [19], [23]}.

Of course, you can find elements of U(Z24) by brute force. Please note that for all
[a] ∈ U(Z24), [a][a] = [1]. In general the set of invertible elements in Zn is denoted
by Z∗

n. Hence Z∗
24 = U(Z24). It is a well-known fact that

[a][a] = [1] for all [a] ∈ Z∗
n ⇔ n | 24.



Quiz 2 Due: 10:00 a.m. April 25, 2007

Division: ID#: Name:

Let π =

(
1 2 3 4 5 6 7 8
5 4 8 1 2 6 3 7

)

, σ =

(
1 2 3 4 5 6 7 8
3 7 1 5 6 8 4 2

)

.

1. Compute πσπ−1.

2. Express each of σ and πσπ−1 as a product of disjoint cycles. (Do you recognize
some similarity between σ and πσπ−1?)

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a
shortest?)

4. Express each of π and σ as a product of adjacent transpositions (1, 2), (2, 3), . . . , (7, 8).
(Is it a shortest?)

5. Determine sign(π) and sign(σ).

Message: Any questions, comments or requests?



Solutions to Quiz 2 April 25, 2007

Let π =

(
1 2 3 4 5 6 7 8
5 4 8 1 2 6 3 7

)

, σ =

(
1 2 3 4 5 6 7 8
3 7 1 5 6 8 4 2

)

.

1. Compute πσπ−1.

Sol.

πσπ−1

=

(
1 2 3 4 5 6 7 8
5 4 8 1 2 6 3 7

)(
1 2 3 4 5 6 7 8
3 7 1 5 6 8 4 2

)(
5 4 8 1 2 6 3 7
1 2 3 4 5 6 7 8

)

=

(
1 2 3 4 5 6 7 8
2 6 1 3 8 7 4 5

)

.

2. Express each of σ and πσπ−1 as a product of disjoint cycles. (Do you recognize
some similarity between σ and πσπ−1?)

Sol.

σ = (1, 3)(2, 7, 4, 5, 6, 8),

πσπ−1 = (1, 2, 6, 7, 4, 3)(5, 8),

( = (5, 8)(4, 3, 1, 2, 6, 7) = (π(1),π(3))(π(2),π(7),π(4),π(5),π(6),π(8))).

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a
shortest?)

Sol.

π = (1, 4)(1, 2)(1, 5)(3, 7)(3, 8) (= (1, 5)(5, 2)(2, 4)(3, 8)(8, 7)),

σ = (1, 3)(2, 8)(2, 6)(2, 5)(2, 4)(2, 7) (= (1, 3)(2, 7)(7, 4)(4, 5)(5, 6)(6, 8)).

Use the formula in Corollary 3.1.4. Both of these are shortest.

4. Express each of π and σ as a product of adjacent transpositions (1, 2), (2, 3), . . . , (7, 8).
(Is it a shortest?)

Sol.

π = (7, 8)(4, 5)(6, 7)(3, 4)(4, 5)(5, 6)(6, 7)(2, 3)(3, 4)(4, 5)(1, 2)(2, 3)(3, 4),

σ = (6, 7)(5, 6)(4, 5)(5, 6)(6, 7)(7, 8)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(1, 2)(2, 3).

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The
minimal number of adjacent transpositions required to express each permutation
equals the number # of the permutation to be calculated in the next problem. Can
you prove this fact?

5. Determine sign(π) and sign(σ).

Sol. Since #(π) = 13, sign(π) = (−1)13 = −1. Similarly since #(σ) = (−1)14,
sign(π) = (−1)14 = 1. Since π is the product of 3 cycles including one 1 cycle,
sign(π) = (−1)8−3 = −1 by Cauchy’s Formula in (3.1.9). Similarly σ is the product
of 2 cycles, sign(σ) = (−1)8−2 = 1.



Quiz 3 Due: 10:00 a.m. May 7, 2007

Division: ID#: Name:

Let (M, ◦) be a monoid with identity element e, i.e., x ◦ e = x = e ◦ x for all x ∈ M .
Let U = {x ∈ M | there exist y, z ∈ M such that x ◦ y = e = z ◦ x}.

1. Suppose a ◦ b = e = c ◦ a = a ◦ d for a, b, c, d ∈ M . Show that b = c = d.

2. Show that e ∈ U .

3. Show that if a, b ∈ U , then a ◦ b ∈ U .

4. Show that (U, ◦) is a group.

Message: Any requests or questions?



Solutions to Quiz 3 May 7, 2007

Let (M, ◦) be a monoid with identity element e, i.e., x ◦ e = x = e ◦ x for all x ∈ M .
Let U = {x ∈ M | there exist y, z ∈ M such that x ◦ y = e = z ◦ x}.

1. Suppose a ◦ b = e = c ◦ a = a ◦ d for a, b, c, d ∈ M . Show that b = c = d.

Sol. Since

b = e ◦ b = (c ◦ a) ◦ b = c ◦ (a ◦ b) = c ◦ e = c

d = e ◦ d = (c ◦ a) ◦ d = c ◦ (a ◦ d) = c ◦ e = c.

Hence b = c = d.

2. Show that e ∈ U .

Sol. Let y = z = e. Then e ◦ e = e = e ◦ e. Hence e ∈ M .

3. Show that if a, b ∈ U , then a ◦ b ∈ U .

Sol. By the definition of U , there exist a′, a′′, b′, b′′ ∈ M such that

a ◦ a′ = e = a′′ ◦ a, and b ◦ b′ = e = b′′ ◦ b.

Let y = b′ ◦ a′ and z = b′′ ◦ a′′. Then

(a◦b)◦y = (a◦b)◦(b′◦a′) = a◦(b◦(b′◦a′)) = a◦((b◦b′)◦a′) = a◦(e◦a′) = a◦a′ = e.

z◦(a◦b) = (b′′◦a′′)◦(a◦b) = b′′◦(a′′◦(a◦b)) = b′′◦((a′′◦a)◦b) = b′′◦(e◦b) = b′′◦b = e.

Hence a ◦ b ∈ U .

4. Show that (U, ◦) is a group.

Sol. Let a, b ∈ U . Then a ◦ b ∈ U by 3. Hence U ×U → U ((a, b) *→ a ◦ b) defines
a binary operation on U . Since U ⊂ M , for all a, b, c ∈ U , a ◦ (b ◦ c) = (a ◦ b) ◦ c
and associativity holds. By 2, e ∈ U . Suppose a ∈ U . Then there exists y, z ∈ M
such that a ◦ y = e = z ◦ a. Then by 1, y = z and y ◦ a = e = a ◦ y. Hence y ∈ U
and (M, ◦) is a group.

By 1, we have U = {x ∈ M | there exist y ∈ M such that x ◦ y = e = y ◦ x}. Hence
U is the set of invertible elements in M .



Quiz 4 Due: 10:00 a.m. May 14, 2007

Division: ID#: Name:

1. Let G be a group and a an element of G. Show that a mapping #a : G → G(x *→ ax)
is a bijection.

2. Let G be a group and H a nonempty finite subset of G such that xy ∈ H whenever
x, y ∈ H. Show that H is a subgroup of G. (Hint: Let a ∈ H and consider a
mapping #a : H → H (x *→ ax).)

3. Give an example that even if H is a nonempty subset of a group G such that xy ∈ H
whenever x, y ∈ H, H is not a subgroup of G. (Hint: Find such a subset in (Z, +).)

4. Find all subgroups of (Z8, +). ([a] + [b] = [a + b] for all a, b ∈ Z.)

5. Find all subgroups of (Z∗
8, ·) (Z∗

8 is the set of invertible elements in a monoid Z8

with respect to the multiplication [a] · [b] = [ab].)

Message: Any questions or requests?



Solutions to Quiz 4 May 14, 2007

1. Let G be a group and a an element of G. Show that a mapping #a : G → G(x *→ ax)
is a bijection.

Sol. Suppose #a(x) = #a(y). Then ax = ay. By multiplying a−1 from the left we
have x = y. Hence #a is injective. Let x ∈ G. Then #a(a−1x) = x. Hence #a is
surjective.

2. Let G be a group and H a nonempty finite subset of G such that xy ∈ H whenever
x, y ∈ H. Show that H is a subgroup of G. (Hint: Let a ∈ H and consider a
mapping #a : H → H (x *→ ax).)

Sol. Let a be an arbitrary element in H and #a a mapping #a : H → H (x *→ ax).
We can take at least one such a as H is nonempty. By assumption, ax ∈ H and this
mapping is well-defined. By 1 above, this mapping is injective. Since H is a finite
set, #a is bijective. (Note that since #a is injective, |H| = |#a(H)| and #a(H) ⊂ H.)
Since a ∈ H, there is an element e ∈ H such that #a(e) = a. Since ae = a, e is the
identity element. (This can be seen by multiplying a−1 on both hand sides from the
left.) Hence 1 ∈ H. Since there is also an element a′ ∈ H such that #a(a′) = 1,
aa′ = 1 implies a′ = a−1. Thus a−1 ∈ H. Therefore H is a subgroup of G by
Proposition 4.1 (3,3,3).

3. Give an example that even if H is a nonempty subset of a group G such that xy ∈ H
whenever x, y ∈ H, H is not a subgroup of G. (Hint: Find such a subset in (Z, +).)

Sol. Let H = N . With respect to addition, H satisfies the required condition.
But H is not a subgroup as the inverse of 1 is not in N .

4. Find all subgroups of (Z8, +). ([a] + [b] = [a + b] for all a, b ∈ Z.)

Sol. Z8 = {[0], [1], [2], [3], [4], [5], [6], [7]}. Let H be a subgroup of Z8. H must
contain [0], the identity element of Z8. If H contains [1], it must contain [1] + [1] =
[2], [1] + [2] = [3], . . . and H = Z8. Similarly, If H contains [3], [5] or [7] then
H = Z8. On the other hand, if H contains [4] then H ⊃ {[0], [4]}, [2] or [6] then
H ⊃ {[0], [6], [4], [2]}. Hence if H -= Z8 or H -= {[0]}, H contains {[0], [4]} or
{[0], [2], [4], [6]}. It is easy to check that these are subgroups generated by [4] or
[2] respectively. Hence these are groups. Moreover, there is no other because if H
contains an extra element, then H = Z8. Therefore the following are the list of
subgroups of Z8.

{[0}, {[0], [4]}, {[0], [2], [4], [6]},Z8.

5. Find all subgroups of (Z∗
8, ·) (Z∗

8 is the set of invertible elements in a monoid Z8

with respect to the multiplication [a] · [b] = [ab].)

Sol. It is easy to check that Z∗
8 = {[1], [3], [5], [7]} and [1] is the identity element.

Hence subgroups are

{[1]}, {[1], [3]}, {[1], [5]}, {[1], [7]}, Z∗
8.

Note that if a subgroup contains both [3] and [5], then it must contain [3][5] = [7]
and it must be equal to Z∗

8. Other cases are similar.



Quiz 5 Due: 10:00 a.m. May 21, 2007

Division: ID#: Name:

1. Let H be a subgroup of a gourp G. You may use the fact that for a nonempty
subset K of a group G, K ≤ G ⇔ (KK ⊆ K) ∧ (K−1 ⊆ K).

(a) For x, y ∈ G, show that Hx = Hy ⇔ xy−1 ∈ H.

(b) Show that H = HH = HH−1 = H−1.

(c) Let K be a nonempty subset of a group G. Show that if KK−1 ⊆ K then
K ≤ G.

2. Let G = Z15 and K = {[0], [5], [25]} ⊆ Z15. Show that K is a subgroup of a group
G and find all distinct cosets of K in G.

Message: Any questions or requests?



Solutions to Quiz 5 May 21, 2007

1. Let H be a subgroup of a gourp G. You may use the fact that for a nonempty
subset K of a group G, K ≤ G ⇔ (KK ⊆ K) ∧ (K−1 ⊆ K).

(a) For x, y ∈ G, show that Hx = Hy ⇔ xy−1 ∈ H.

Sol. (⇒) Since 1 ∈ H, x = 1x ∈ Hx = Hy. Hence there exists h ∈ H such
that x = hy. By multiplying y−1 from the right, we have xy−1 = h ∈ H.

(⇐) Suppose xy−1 ∈ H. Since H is a subgroup of G, yx−1 = (xy−1)−1 ∈ H.
Hence

Hx = H(xy−1)y ⊆ HHy ⊆ Hy = H(yx−1)x ⊆ HHx ⊆ Hx.

Therefore Hx ⊆ Hy ⊆ Hx and so Hx = Hy.

It is easy to check that for x, y ∈ G, xy−1 ∈ H defines an equivalence relation on
G. Hence another way to show (a) is to check [x] = Hx, where [x] = {z ∈ G |
zx−1 ∈ H}, the equivalence class containing x. Note that x ∼ y ⇔ [x] = [y].

(b) Show that H = HH = HH−1 = H−1. Sol. Since H ≤ G, HH ⊆ H and
H−1 ⊆ H. Let h ∈ H. Then h−1 ∈ H. Hence h = (h−1)−1 ∈ H−1 ⊆ H. Thus
H = H−1. Since 1 ∈ H, for every h ∈ H, h = h1 ∈ HH. Hence H ⊆ HH and
HH = H. Since H = H−1, H = HH = HH−1 as desired.

(c) Let K be a nonempty subset of a group G. Show that if KK−1 ⊆ K then
K ≤ G.

Sol. Since K is a nonempty subset of G, there exists an element k in K.
Then 1 = kk−1 ∈ KK−1 ⊆ K. Hence 1 ∈ K. Let x, y ∈ K. Then x−1 =
1x−1 ∈ KK−1 ⊆ K. Hence K−1 ⊆ K. Thus y−1 ∈ K and xy = x(y−1)−1 ∈
KK−1 ⊆ K. Therefore KK ⊆ K. We have K ≤ G.

2. Let G = Z15 and K = {[0], [5], [25]} ⊆ Z15. Show that K is a subgroup of a group
G and find all distinct cosets of K in G.

Sol. First note that Z15 = {[0], [1], [2], [3], . . . , [14]} and |Z15| = 15. Moreover,
K = {[0], [5], [10]} = 〈[5]〉 ≤ Z15. By Langrange’s Theorem, |Z15 : K| = 15/3 = 5.

Z15/K = {K, [1] + K, [2] + K, [3] + K, [4] + K}.

Note that if 0 ≤ i < j ≤ 4, then 0 < j − i < 5 and [j] − [i] = [j − i] -∈ K. Hence
[i] + K -= [j] + K by 1 (a).



Quiz 6 Due: 10:00 a.m. May 28, 2007

Division: ID#: Name:

Let N be a subgroup of a group G. Show the following.

1. Let a ∈ G. Then aN = N = Na if and only if a ∈ N .

2. xNx−1 ⊆ N for all x ∈ G − N ⇒ xN = Nx for all x ∈ G. (G − N = {x ∈ G | x -∈
N}.)

3. For x, y ∈ G, let x ∼G y if and only if there exists g ∈ G such that y = gxg−1. Show
that ∼G defines an equivalence relation on G.

4. Show that N is a normal subgroup of G if and only if N is a union of some equivalence
classes with respect to ∼G.

5. Let C be an equivalence class with respect to ∼G. Then |C| = 1 if and only if every
element of C commutes with all elements of G.

Message: Any questions or requests?



Solutions to Quiz 6 May 28, 2007

Let N be a subgroup of a group G. Show the following.

1. Let a ∈ G. Then aN = N = Na if and only if a ∈ N .

Sol. Suppose aN = N . Since 1 ∈ N , a = a1 ∈ aN = N , a ∈ N . Suppose a ∈ N .
Then

N = aa−1N ⊆ aN−1N ⊆ aN ⊆ NN ⊆ N = Na−1a ⊆ NN−1a ⊆ Na ⊆ N.

Hence aN = N = Na.

This also follows from the following: bN = aN ⇔ b−1a ∈ N and Nb = Na ⇔ ab−1 ∈
N by setting b = 1. Conversely if we know Problem 1, then above statements follow
immediately as bN = aN ⇔ a−1bN = N and Nb = Na ⇔ N = Nab−1.

2. xNx−1 ⊆ N for all x ∈ G − N ⇒ xN = Nx for all x ∈ G. (G − N = {x ∈ G | x -∈
N}.)
Sol. Since xN = Nx holds for all x ∈ N by Problem 1, the hypothesis xNx−1 ⊆
N for all x ∈ G − N is nothing but xNx−1 ⊆ N for all x ∈ G. Hence by multiplying
x from the right, xN ⊆ Nx. Since xNx−1 ⊆ N holds for all x ∈ G, it holds for x−1

as well. Hence x−1Nx ⊆ N , and we have Nx ⊆ xN . Therefore, xN = Nx for all
x ∈ G.

3. For x, y ∈ G, let x ∼G y if and only if there exists g ∈ G such that y = gxg−1. Show
that ∼G defines an equivalence relation on G.

Sol. Let x ∈ G. Then x = 1x1−1. Hence x ∼G x. Suppose x ∼G y. Then there
exists g ∈ G such that y = gxg−1. We have x = g−1y(g−1)−1. Since g−1 ∈ G,
y ∼G x by definition. Suppose x ∼G y and y ∼G z. Then there exist g, g′ ∈ G such
that y = gxg−1 and z = g′yg′−1. Hence z = g′yg′−1 = g′gxg−1g′−1 = (g′g)x(g′g)−1.
Hence x ∼G z as g′g ∈ G. Therefore ∼G is an equivalence relation.

4. Show that N is a normal subgroup of G if and only if N is a union of some equivalence
classes with respect to ∼G.

Sol. Suppose x ∈ N and x ∼G y. Then there exists g ∈ G such that y = gxg−1.
Since N is normal in G, y = gxg−1 ∈ gNg−1 ⊆ N . Hence if [x] is the equivalence
class containing x, [x] ⊆ N . Therefore N is a union of equivalence classes. (The
equivalence class containing x in this case is often written as xG, and called the
conjugacy class containing x. Therefore a normal subgroup of a group G is a union
of conjugacy classes of G.)

5. Let C be an equivalence class with respect to ∼G. Then |C| = 1 if and only if every
element of C commutes with all elements of G.

Sol. Suppose C = {c}. Since c ∼G gcg−1, gcg−1 = c. Hence gc = cg and c
commutes with all elements of G. Conversely if c commutes with all elements of G
and x ∼G c, then x = gcg−1 for some g ∈ G. But by assumption on c, c commutes
with g and x = c. Therefore C consists of c only. (The set of elements in G that
commutes with all elements of G is called the center of G and denoted by Z(G).
Hence Z(G) = {x ∈ G | xg = gx for all g ∈ G}. It is easy to see that Z(G) ! G.
Moreover every subgroup H of Z(G) is a normal subgroup of G.)



Quiz 7 Due: 10:00 a.m. June 4, 2007

Division: ID#: Name:

Let H and K be subgroups of a group G.

1. Show that H×K becomes a group by the following binary operation. For (h1, k1), (h2, k2) ∈
H × K, (h1, k1)(h2, k2) = (h1h2, k1k2).

2. Let α : H × K → G ((h, k) *→ hk). Suppose α is a group homomorphism. Show
that hk = kh for all h ∈ H and k ∈ K.

3. For the same mapping α in Problem 2, suppose that α is an injective homomorphism.
Show that H ∩ K = 1.

4. Suppose HK = G, H∩K = 1 and both H and K are normal subgroups of G. Then
the mapping α in Problem 2 is an isomorphism.

Message: Any questions or requests?



Solutions to Quiz 7 June 4, 2007
Let H and K be subgroups of a group G.

1. Show that H×K becomes a group by the following binary operation. For (h1, k1), (h2, k2) ∈
H × K, (h1, k1)(h2, k2) = (h1h2, k1k2).

Sol. Let (h1, k1), (h2, k2), (h3, k3) ∈ H × K. Then

(i) ((h1, k1)(h2, k2))(h3, k3) = (h1h2, k1k2)(h3, k3) = (h1h2h3, k1k2k3)
= (h1, k1)(h2h3, k2k3) = (h1, k1)((h2, k2)(h3, k3)).

(ii) (h1, k1)(1H , 1K) = (h1, k1) = (1H , 1K)(h1, k1),

(iii) (h1, k1)(h
−1
1 , k−1

1 ) = (1H , 1K) = (h−1
1 , k−1

1 )(h1, k1). Hence H × K is a group.

2. Let α : H × K → G ((h, k) *→ hk). Suppose α is a group homomorphism. Show
that hk = kh for all h ∈ H and k ∈ K.

Sol. Let h ∈ H and k ∈ K. Then

hk = α((h, k)) = α((1, k)(h, 1)) = α((1, k))α((h, 1)) = kh.

Hence hk = kh for all h ∈ H and k ∈ K.

3. For the same mapping α in Problem 2, suppose that α is an injective homomorphism.
Show that H ∩ K = 1.

Sol. Let x ∈ H ∩ K. Since (x, x−1) ∈ H × K and

α((1, 1)) = 1 = α((x, x−1),

(1, 1) = (x, x−1) as α is injective. Hence x = 1. Therefore H ∩ K = 1.

4. Suppose HK = G, H∩K = 1 and both H and K are normal subgroups of G. Then
the mapping α in Problem 2 is an isomorphism.

Sol. Let h ∈ H and k ∈ K. Since both H and K are normal,

K 6 (hkh−1)k−1 = h(kh−1k−1) ∈ H.

Hence hkh−1k−1 = 1 as H ∩ K = 1. Therefore hk = kh for all h ∈ H and k ∈ K.
Let h1, h2 ∈ H and k1, k2 ∈ K. Then

α((h1, k1)(h2, k2)) = α((h1h2, k1k2)) = h1h2k1k2 = h1k1h2k2 = α((h1, k1))α((h2, k2)).

Hence α is a group homomorphism. Suppose α((h1, k1)) = α((h2, k2)). Then h1k1 =
h2k2. Hence h−1

2 h1 = k2k
−1
1 ∈ H ∩ K = 1. Therefore h1 = h2 and k1 = k2 in this

case and α is injective. Since G = HK, α is surjective and α is an isormorphism as
desired.



Quiz 8 Due: 10:00 a.m. June 13, 2007

Division: ID#: Name:

Let G be a group and α : G × G → G ((g, x) *→ gxg−1).

1. Show that α defines a left action of G on itself.

2. For x ∈ G, show that StG(x) = {g | (g ∈ G) ∧ (α(g, x) = x)} is a subgroup of G.

3. For g ∈ G, let Fix(g) = {x | (x ∈ G) ∧ (α(g, x) = x)}. Show that Fix(g) = StG(g),
where StG(g) is the subgroup defined in the previous problem.

4. Show that the kernel of this action is Z(G) = {x ∈ G | xg = gx (for all g ∈ G)}.

5. Let C be the equivalence class containing x defined in Quiz 6. Show that

|G : StG(x)| = |C|.

Message: Any questions or requests?



Solutions to Quiz 8 June 13, 2007

Let G be a group and α : G × G → G ((g, x) *→ gxg−1).

1. Show that α defines a left action of G on itself.

Sol. Let g · x = α(g, x) = gxg−1. Then

g1 · (g2 · x) = g1g2xg−1
2 g−1

1 = (g1g2)x(g1g2)
−1 = (g1g2) · x.

Moreover 1 · x = 1x1−1 = x. Hence α defines a left action of G on itself.

Note that G × G → G (x *→ gx) also defines a left action. But clearly the above α
defines a different left action.

2. For x ∈ G, show that StG(x) = {g | (g ∈ G) ∧ (α(g, x) = x)} is a subgroup of G.

Sol. StG(x) = {g | (g ∈ G) ∧ (α(g, x) = x)} is always a subgroup for all left
actions. Let g1, g2 ∈ StG(x). Then α(g1, x) = x and α(g2, x) = x. Firstly since
α(1, x) = x, 1 ∈ StG(x). Secondly since

α(g1g2, x) = α(g1,α(g2, x)) = α(g1, x) = x,

g1g2 ∈ StG(x). Thirdly

α(g−1
1 , x) = α(g−1

1 , α(g1, x)) = α(g−1
1 g1, x) = α(1, x) = x.

Hence g−1
1 ∈ StG(x) and StG(x) is a subgroup of G, which is called the stabilizer of

x.

3. For g ∈ G, let Fix(g) = {x | (x ∈ G) ∧ (α(g, x) = x)}. Show that Fix(g) = StG(g),
where StG(g) is the subgroup defined in the previous problem.

Sol. Since StG(g) is a subgroup of G,

Fix(g) = {x | (x ∈ G) ∧ (α(g, x) = x)} = {x ∈ G | gxg−1 = x}
= {x ∈ G | x−1gx = g} = {y ∈ G | ygy−1 = g}−1 = StG(g)−1

= StG(g).

4. Show that the kernel of this action is Z(G) = {x ∈ G | xg = gx (for all g ∈ G)}.
Sol. Let K be the kernel of this action. Then

K = {g ∈ G | α(g, x) = x for all x ∈ G} = {g ∈ G | gxg−1 = x for all x ∈ G}
= {g ∈ G | gx = xg for all x ∈ G} = Z(G).

5. Let C be the equivalence class containing x defined in Quiz 6. Show that

|G : StG(x)| = |C|.
Sol. This follows from a general theorem (5.2.1) in the textbook. But we give a
proof here in this particular case. Let H = StG(x).

α(g1, x) = α(g2, x) ⇔ g1xg−1
1 = g2xg−1

2 ⇔ g−1
2 g1x(g−1

2 g1)
−1 = x ⇔ g−1

2 g1 ∈ H.

Hence α(g1, x) = α(g2, x) ⇔ g1H = g2H. Since

C = {gxg−1 | g ∈ G} = {α(g, x) | g ∈ G},
|C| = |G : H| as desired.


