Quiz 1

Due: 10:00 a.m. April 18, 2007
Division:
Division: ID\#:
Name:

1. Let d and e be integers satistying $d \mid e$ and $e \mid d$. Show that $e=d$ or $-d$.
2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers and e a common divisor of $a_{1}, a_{2}, \ldots, a_{n}$, i.e., $e \mid a_{i}$ for $i=1,2, \ldots, n$. Show that the following conditions are equivalent.
(a) $c \mid a_{i}$ for $i=1,2, \ldots, n \Rightarrow c \mid e$.
(b) There exist integers x_{1}, \ldots, x_{n} such that $e=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}$.
3. Find all elements $[a] \in \boldsymbol{Z}_{24}$ such that there exists $[x] \in \boldsymbol{Z}_{24}$ satisfying $[a][x]=[1]$.

Solutions to Quiz 1

1. Let d and e be integers satistying $d \mid e$ and $e \mid d$. Show that $e=d$ or $-d$.

Sol. Since $d \mid e$ and $e \mid d$, there exist integers a and b such that $e=a d, d=b e$. Hence if one of d or e is zero, then both are zero, and $e=d$ or $-d$ in this case. Suppose both d and e are nonzero. Since $e=a d, d=b e$ implies $e=a d=a b e$, $1=a b$. Since both a and b are integers, we have $a=1$ or -1 . Since $e=a d, e=d$ or $e=-d$.
2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers and e a common divisor of $a_{1}, a_{2}, \ldots, a_{n}$, i.e., $e \mid a_{i}$ for $i=1,2, \ldots, n$. Show that the following conditions are equivalent.
(a) $c \mid a_{i}$ for $i=1,2, \ldots, n \Rightarrow c \mid e$.
(b) There exist integers x_{1}, \ldots, x_{n} such that $e=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}$.

Sol. Let $d=\operatorname{gcd}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then $d \geq 0$ and d satisfies $d \mid a_{i}$ for $i=$ $1,2, \ldots, n$, and (a), (b).
Suppose e satisfies (a). Then $d \mid e$ by (a), and $e \mid d$ as d satisfies (a) by replacing e by d. Hence by $1, e=d$ or $-d$. Since d satisfies (b), e satisfies (b) as well.
Suppose e satisfies (b). Let c be an integer satisfying $c \mid a_{i}$ for $i=1,2, \ldots, n$. Since e has an expression $e=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}, c \mid e$. This shows (a).

The above problem shows that the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{n}$ can also be defined as a nonnegative common divisor of $a_{1}, a_{2}, \ldots, a_{n}$ satisfying (b).
3. Find all elements $[a] \in \boldsymbol{Z}_{24}$ such that there exists $[x] \in \boldsymbol{Z}_{24}$ satisfying $[a][x]=[1]$.

Sol. Let $U\left(\boldsymbol{Z}_{24}\right)=\left\{[a] \in \boldsymbol{Z}_{24} \mid\right.$ There exists $[x] \in \boldsymbol{Z}_{24}$ such that $\left.[a][x]=[1]\right\}$. Since $[1]=[a][x]=[a x]$ by the definition of multiplication in $\boldsymbol{Z}_{24}, a x \equiv 1(\bmod 24)$. Hence there exists an integer y such that $a x-1=24 y$. Hence $a x-24 y=1$. Let $d=\operatorname{gcd}\{a, 24\}$. Then $d \mid a x-24 y=1$. So $d=1$. On the other hand, if $\operatorname{gcd}\{a, 24\}=1$, there exist integers x and y such that $a x+24 y=1$. Thus $[a][x]=[1-24 y]=[1]$. Hence $[a] \in U\left(\boldsymbol{Z}_{24}\right)$. Therefore

$$
U\left(\boldsymbol{Z}_{24}\right)=\{[a] \mid \operatorname{gcd}\{a, 24\}=1, a \in \boldsymbol{Z}\}=\{[1],[5],[7],[11],[13],[17],[19],[23]\} .
$$

Of course, you can find elements of $U\left(\boldsymbol{Z}_{24}\right)$ by brute force. Please note that for all $[a] \in U\left(\boldsymbol{Z}_{24}\right),[a][a]=[1]$. In general the set of invertible elements in \boldsymbol{Z}_{n} is denoted by \boldsymbol{Z}_{n}^{*}. Hence $\boldsymbol{Z}_{24}^{*}=U\left(\boldsymbol{Z}_{24}\right)$. It is a well-known fact that

$$
[a][a]=[1] \text { for all }[a] \in \boldsymbol{Z}_{n}^{*} \Leftrightarrow n \mid 24 \text {. }
$$

Quiz 2

Due: 10:00 a.m. April 25, 2007
Division:
ID\#:
Name:

Let $\pi=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 8 & 1 & 2 & 6 & 3 & 7\end{array}\right), \sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 1 & 5 & 6 & 8 & 4 & 2\end{array}\right)$.

1. Compute $\pi \sigma \pi^{-1}$.
2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles. (Do you recognize some similarity between σ and $\pi \sigma \pi^{-1}$?)
3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a shortest?)
4. Express each of π and σ as a product of adjacent transpositions $(1,2),(2,3), \ldots,(7,8)$. (Is it a shortest?)
5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Solutions to Quiz 2

$$
\text { Let } \pi=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 4 & 8 & 1 & 2 & 6 & 3 & 7
\end{array}\right), \sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 7 & 1 & 5 & 6 & 8 & 4 & 2
\end{array}\right)
$$

1. Compute $\pi \sigma \pi^{-1}$.

Sol.

$$
\begin{aligned}
& \pi \sigma \pi^{-1} \\
& \quad=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 4 & 8 & 1 & 2 & 6 & 3 & 7
\end{array}\right)\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 7 & 1 & 5 & 6 & 8 & 4 & 2
\end{array}\right)\left(\begin{array}{llllllll}
5 & 4 & 8 & 1 & 2 & 6 & 3 & 7 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}\right) \\
& \\
& =\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 6 & 1 & 3 & 8 & 7 & 4 & 5
\end{array}\right) .
\end{aligned}
$$

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles. (Do you recognize some similarity between σ and $\pi \sigma \pi^{-1}$?)

Sol.

$$
\begin{aligned}
\sigma & =(1,3)(2,7,4,5,6,8) \\
\pi \sigma \pi^{-1} & =(1,2,6,7,4,3)(5,8) \\
(& =(5,8)(4,3,1,2,6,7)=(\pi(1), \pi(3))(\pi(2), \pi(7), \pi(4), \pi(5), \pi(6), \pi(8)))
\end{aligned}
$$

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a shortest?)

Sol.

$$
\begin{aligned}
\pi & =(1,4)(1,2)(1,5)(3,7)(3,8)(=(1,5)(5,2)(2,4)(3,8)(8,7)) \\
\sigma & =(1,3)(2,8)(2,6)(2,5)(2,4)(2,7)(=(1,3)(2,7)(7,4)(4,5)(5,6)(6,8))
\end{aligned}
$$

Use the formula in Corollary 3.1.4. Both of these are shortest.
4. Express each of π and σ as a product of adjacent transpositions $(1,2),(2,3), \ldots,(7,8)$. (Is it a shortest?)

Sol.

$$
\begin{aligned}
\pi & =(7,8)(4,5)(6,7)(3,4)(4,5)(5,6)(6,7)(2,3)(3,4)(4,5)(1,2)(2,3)(3,4) \\
\sigma & =(6,7)(5,6)(4,5)(5,6)(6,7)(7,8)(2,3)(3,4)(4,5)(5,6)(6,7)(7,8)(1,2)(2,3)
\end{aligned}
$$

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The minimal number of adjacent transpositions required to express each permutation equals the number ℓ of the permutation to be calculated in the next problem. Can you prove this fact?
5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Sol. Since $\ell(\pi)=13, \operatorname{sign}(\pi)=(-1)^{13}=-1$. Similarly since $\ell(\sigma)=(-1)^{14}$, $\operatorname{sign}(\pi)=(-1)^{14}=1$. Since π is the product of 3 cycles including one 1 cycle, $\operatorname{sign}(\pi)=(-1)^{8-3}=-1$ by Cauchy's Formula in (3.1.9). Similarly σ is the product of 2 cycles, $\operatorname{sign}(\sigma)=(-1)^{8-2}=1$.

Quiz 3

Division:
 ID\#:

Name:
Let (M, \circ) be a monoid with identity element e, i.e., $x \circ e=x=e \circ x$ for all $x \in M$. Let $U=\{x \in M \mid$ there exist $y, z \in M$ such that $x \circ y=e=z \circ x\}$.

1. Suppose $a \circ b=e=c \circ a=a \circ d$ for $a, b, c, d \in M$. Show that $b=c=d$.
2. Show that $e \in U$.
3. Show that if $a, b \in U$, then $a \circ b \in U$.
4. Show that (U, \circ) is a group.

Solutions to Quiz 3

Let (M, \circ) be a monoid with identity element e, i.e., $x \circ e=x=e \circ x$ for all $x \in M$. Let $U=\{x \in M \mid$ there exist $y, z \in M$ such that $x \circ y=e=z \circ x\}$.

1. Suppose $a \circ b=e=c \circ a=a \circ d$ for $a, b, c, d \in M$. Show that $b=c=d$.

Sol. Since

$$
\begin{aligned}
b & =e \circ b=(c \circ a) \circ b=c \circ(a \circ b)=c \circ e=c \\
d & =e \circ d=(c \circ a) \circ d=c \circ(a \circ d)=c \circ e=c .
\end{aligned}
$$

Hence $b=c=d$.
2. Show that $e \in U$.

Sol. Let $y=z=e$. Then $e \circ e=e=e \circ e$. Hence $e \in M$.
3. Show that if $a, b \in U$, then $a \circ b \in U$.

Sol. By the definition of U, there exist $a^{\prime}, a^{\prime \prime}, b^{\prime}, b^{\prime \prime} \in M$ such that

$$
a \circ a^{\prime}=e=a^{\prime \prime} \circ a \text {, and } b \circ b^{\prime}=e=b^{\prime \prime} \circ b \text {. }
$$

Let $y=b^{\prime} \circ a^{\prime}$ and $z=b^{\prime \prime} \circ a^{\prime \prime}$. Then
$(a \circ b) \circ y=(a \circ b) \circ\left(b^{\prime} \circ a^{\prime}\right)=a \circ\left(b \circ\left(b^{\prime} \circ a^{\prime}\right)\right)=a \circ\left(\left(b \circ b^{\prime}\right) \circ a^{\prime}\right)=a \circ\left(e \circ a^{\prime}\right)=a \circ a^{\prime}=e$.
$z \circ(a \circ b)=\left(b^{\prime \prime} \circ a^{\prime \prime}\right) \circ(a \circ b)=b^{\prime \prime} \circ\left(a^{\prime \prime} \circ(a \circ b)\right)=b^{\prime \prime} \circ\left(\left(a^{\prime \prime} \circ a\right) \circ b\right)=b^{\prime \prime} \circ(e \circ b)=b^{\prime \prime} \circ b=e$.
Hence $a \circ b \in U$.
4. Show that (U, \circ) is a group.

Sol. Let $a, b \in U$. Then $a \circ b \in U$ by 3. Hence $U \times U \rightarrow U((a, b) \mapsto a \circ b)$ defines a binary operation on U. Since $U \subset M$, for all $a, b, c \in U, a \circ(b \circ c)=(a \circ b) \circ c$ and associativity holds. By $2, e \in U$. Suppose $a \in U$. Then there exists $y, z \in M$ such that $a \circ y=e=z \circ a$. Then by $1, y=z$ and $y \circ a=e=a \circ y$. Hence $y \in U$ and (M, \circ) is a group.

By 1, we have $U=\{x \in M \mid$ there exist $y \in M$ such that $x \circ y=e=y \circ x\}$. Hence U is the set of invertible elements in M.

Quiz 4

Division:
ID\#:
Name:

1. Let G be a group and a an element of G. Show that a mapping $\ell_{a}: G \rightarrow G(x \mapsto a x)$ is a bijection.
2. Let G be a group and H a nonempty finite subset of G such that $x y \in H$ whenever $x, y \in H$. Show that H is a subgroup of G. (Hint: Let $a \in H$ and consider a mapping $\ell_{a}: H \rightarrow H(x \mapsto a x)$.)
3. Give an example that even if H is a nonempty subset of a group G such that $x y \in H$ whenever $x, y \in H, H$ is not a subgroup of G. (Hint: Find such a subset in $(\boldsymbol{Z},+)$.)
4. Find all subgroups of $\left(\boldsymbol{Z}_{8},+\right) .([a]+[b]=[a+b]$ for all $a, b \in \boldsymbol{Z}$. $)$
5. Find all subgroups of $\left(\boldsymbol{Z}_{8}^{*}, \cdot\right)\left(\boldsymbol{Z}_{8}^{*}\right.$ is the set of invertible elements in a monoid \boldsymbol{Z}_{8} with respect to the multiplication $[a] \cdot[b]=[a b]$.)

Solutions to Quiz 4

1. Let G be a group and a an element of G. Show that a mapping $\ell_{a}: G \rightarrow G(x \mapsto a x)$ is a bijection.
Sol. Suppose $\ell_{a}(x)=\ell_{a}(y)$. Then $a x=a y$. By multiplying a^{-1} from the left we have $x=y$. Hence ℓ_{a} is injective. Let $x \in G$. Then $\ell_{a}\left(a^{-1} x\right)=x$. Hence ℓ_{a} is surjective.
2. Let G be a group and H a nonempty finite subset of G such that $x y \in H$ whenever $x, y \in H$. Show that H is a subgroup of G. (Hint: Let $a \in H$ and consider a mapping $\ell_{a}: H \rightarrow H(x \mapsto a x)$.)
Sol. Let a be an arbitrary element in H and ℓ_{a} a mapping $\ell_{a}: H \rightarrow H(x \mapsto a x)$. We can take at least one such a as H is nonempty. By assumption, $a x \in H$ and this mapping is well-defined. By 1 above, this mapping is injective. Since H is a finite set, ℓ_{a} is bijective. (Note that since ℓ_{a} is injective, $|H|=\left|\ell_{a}(H)\right|$ and $\ell_{a}(H) \subset H$.) Since $a \in H$, there is an element $e \in H$ such that $\ell_{a}(e)=a$. Since $a e=a, e$ is the identity element. (This can be seen by multiplying a^{-1} on both hand sides from the left.) Hence $1 \in H$. Since there is also an element $a^{\prime} \in H$ such that $\ell_{a}\left(a^{\prime}\right)=1$, $a a^{\prime}=1$ implies $a^{\prime}=a^{-1}$. Thus $a^{-1} \in H$. Therefore H is a subgroup of G by Proposition 4.1 ($3,3,3$).
3. Give an example that even if H is a nonempty subset of a group G such that $x y \in H$ whenever $x, y \in H, H$ is not a subgroup of G. (Hint: Find such a subset in $(\boldsymbol{Z},+)$.)

Sol. Let $H=\boldsymbol{N}$. With respect to addition, H satisfies the required condition. But H is not a subgroup as the inverse of 1 is not in \boldsymbol{N}.
4. Find all subgroups of $\left(\boldsymbol{Z}_{8},+\right) .([a]+[b]=[a+b]$ for all $a, b \in \boldsymbol{Z}$. $)$

Sol. $\quad \boldsymbol{Z}_{8}=\{[0],[1],[2],[3],[4],[5],[6],[7]\}$. Let H be a subgroup of $\boldsymbol{Z}_{8} . H$ must contain [0], the identity element of \boldsymbol{Z}_{8}. If H contains [1], it must contain [1] $+[1]=$ $[2],[1]+[2]=[3], \ldots$ and $H=\boldsymbol{Z}_{8}$. Similarly, If H contains [3], [5] or [7] then $H=\boldsymbol{Z}_{8}$. On the other hand, if H contains [4] then $H \supset\{[0],[4]\},[2]$ or [6] then $H \supset\{[0],[6],[4],[2]\}$. Hence if $H \neq \boldsymbol{Z}_{8}$ or $H \neq\{[0]\}, H$ contains $\{[0],[4]\}$ or $\{[0],[2],[4],[6]\}$. It is easy to check that these are subgroups generated by [4] or [2] respectively. Hence these are groups. Moreover, there is no other because if H contains an extra element, then $H=\boldsymbol{Z}_{8}$. Therefore the following are the list of subgroups of \boldsymbol{Z}_{8}.

$$
\left\{[0\},\{[0],[4]\},\{[0],[2],[4],[6]\}, \boldsymbol{Z}_{8}\right.
$$

5. Find all subgroups of $\left(\boldsymbol{Z}_{8}^{*}, \cdot\right)\left(\boldsymbol{Z}_{8}^{*}\right.$ is the set of invertible elements in a monoid \boldsymbol{Z}_{8} with respect to the multiplication $[a] \cdot[b]=[a b]$.)
Sol. It is easy to check that $\boldsymbol{Z}_{8}^{*}=\{[1],[3],[5],[7]\}$ and [1] is the identity element. Hence subgroups are

$$
\{[1]\}, \quad\{[1],[3]\}, \quad\{[1],[5]\}, \quad\{[1],[7]\}, \boldsymbol{Z}_{8}^{*} .
$$

Note that if a subgroup contains both [3] and [5], then it must contain [3][5] $=[7]$ and it must be equal to \boldsymbol{Z}_{8}^{*}. Other cases are similar.

Quiz 5

ID\#:
Name:

1. Let H be a subgroup of a gourp G. You may use the fact that for a nonempty subset K of a group $G, K \leq G \Leftrightarrow(K K \subseteq K) \wedge\left(K^{-1} \subseteq K\right)$.
(a) For $x, y \in G$, show that $H x=H y \Leftrightarrow x y^{-1} \in H$.
(b) Show that $H=H H=H H^{-1}=H^{-1}$.
(c) Let K be a nonempty subset of a group G. Show that if $K K^{-1} \subseteq K$ then $K \leq G$.
2. Let $G=\boldsymbol{Z}_{15}$ and $K=\{[0],[5],[25]\} \subseteq \boldsymbol{Z}_{15}$. Show that K is a subgroup of a group G and find all distinct cosets of K in G.

Solutions to Quiz 5

1. Let H be a subgroup of a gourp G. You may use the fact that for a nonempty subset K of a group $G, K \leq G \Leftrightarrow(K K \subseteq K) \wedge\left(K^{-1} \subseteq K\right)$.
(a) For $x, y \in G$, show that $H x=H y \Leftrightarrow x y^{-1} \in H$.

Sol. (\Rightarrow) Since $1 \in H, x=1 x \in H x=H y$. Hence there exists $h \in H$ such that $x=h y$. By multiplying y^{-1} from the right, we have $x y^{-1}=h \in H$.
(\Leftarrow) Suppose $x y^{-1} \in H$. Since H is a subgroup of $G, y x^{-1}=\left(x y^{-1}\right)^{-1} \in H$. Hence

$$
H x=H\left(x y^{-1}\right) y \subseteq H H y \subseteq H y=H\left(y x^{-1}\right) x \subseteq H H x \subseteq H x
$$

Therefore $H x \subseteq H y \subseteq H x$ and so $H x=H y$.
It is easy to check that for $x, y \in G, x y^{-1} \in H$ defines an equivalence relation on G. Hence another way to show (a) is to check $[x]=H x$, where $[x]=\{z \in G \mid$ $\left.z x^{-1} \in H\right\}$, the equivalence class containing x. Note that $x \sim y \Leftrightarrow[x]=[y]$.
(b) Show that $H=H H=H H^{-1}=H^{-1}$. Sol. Since $H \leq G$, $H H \subseteq H$ and $H^{-1} \subseteq H$. Let $h \in H$. Then $h^{-1} \in H$. Hence $h=\left(h^{-1}\right)^{-1} \in H^{-1} \subseteq H$. Thus $H=H^{-1}$. Since $1 \in H$, for every $h \in H, h=h 1 \in H H$. Hence $H \subseteq H H$ and $H H=H$. Since $H=H^{-1}, H=H H=H H^{-1}$ as desired.
(c) Let K be a nonempty subset of a group G. Show that if $K K^{-1} \subseteq K$ then $K \leq G$.
Sol. Since K is a nonempty subset of G, there exists an element k in K. Then $1=k k^{-1} \in K K^{-1} \subseteq K$. Hence $1 \in K$. Let $x, y \in K$. Then $x^{-1}=$ $1 x^{-1} \in K K^{-1} \subseteq K$. Hence $K^{-1} \subseteq K$. Thus $y^{-1} \in K$ and $x y=x\left(y^{-1}\right)^{-1} \in$ $K K^{-1} \subseteq K$. Therefore $K K \subseteq K$. We have $K \leq G$.
2. Let $G=\boldsymbol{Z}_{15}$ and $K=\{[0],[5],[25]\} \subseteq \boldsymbol{Z}_{15}$. Show that K is a subgroup of a group G and find all distinct cosets of K in G.

Sol. First note that $\boldsymbol{Z}_{15}=\{[0],[1],[2],[3], \ldots,[14]\}$ and $\left|\boldsymbol{Z}_{15}\right|=15$. Moreover, $K=\{[0],[5],[10]\}=\langle[5]\rangle \leq \boldsymbol{Z}_{15}$. By Langrange's Theorem, $\left|\boldsymbol{Z}_{15}: K\right|=15 / 3=5$.

$$
\boldsymbol{Z}_{15} / K=\{K,[1]+K,[2]+K,[3]+K,[4]+K\} .
$$

Note that if $0 \leq i<j \leq 4$, then $0<j-i<5$ and $[j]-[i]=[j-i] \notin K$. Hence $[i]+K \neq[j]+K$ by 1 (a).

Quiz 6

Due: 10:00 a.m. May 28, 2007

Name:

Let N be a subgroup of a group G. Show the following.

1. Let $a \in G$. Then $a N=N=N a$ if and only if $a \in N$.
2. $x N x^{-1} \subseteq N$ for all $x \in G-N \Rightarrow x N=N x$ for all $x \in G .(G-N=\{x \in G \mid x \notin$ $N\}$.
3. For $x, y \in G$, let $x \sim_{G} y$ if and only if there exists $g \in G$ such that $y=g x g^{-1}$. Show that \sim_{G} defines an equivalence relation on G.
4. Show that N is a normal subgroup of G if and only if N is a union of some equivalence classes with respect to \sim_{G}.
5. Let C be an equivalence class with respect to \sim_{G}. Then $|C|=1$ if and only if every element of C commutes with all elements of G.

Solutions to Quiz 6

Let N be a subgroup of a group G. Show the following.

1. Let $a \in G$. Then $a N=N=N a$ if and only if $a \in N$.

Sol. \quad Suppose $a N=N$. Since $1 \in N, a=a 1 \in a N=N, a \in N$. Suppose $a \in N$. Then

$$
N=a a^{-1} N \subseteq a N^{-1} N \subseteq a N \subseteq N N \subseteq N=N a^{-1} a \subseteq N N^{-1} a \subseteq N a \subseteq N
$$

Hence $a N=N=N a$.
This also follows from the following: $b N=a N \Leftrightarrow b^{-1} a \in N$ and $N b=N a \Leftrightarrow a b^{-1} \in$ N by setting $b=1$. Conversely if we know Problem 1 , then above statements follow immediately as $b N=a N \Leftrightarrow a^{-1} b N=N$ and $N b=N a \Leftrightarrow N=N a b^{-1}$.
2. $x N x^{-1} \subseteq N$ for all $x \in G-N \Rightarrow x N=N x$ for all $x \in G .(G-N=\{x \in G \mid x \notin$ $N\}$.)
Sol. Since $x N=N x$ holds for all $x \in N$ by Problem 1, the hypothesis $x N x^{-1} \subseteq$ N for all $x \in G-N$ is nothing but $x N x^{-1} \subseteq N$ for all $x \in G$. Hence by multiplying x from the right, $x N \subseteq N x$. Since $x N x^{-1} \subseteq N$ holds for all $x \in G$, it holds for x^{-1} as well. Hence $x^{-1} N x \subseteq N$, and we have $N x \subseteq x N$. Therefore, $x N=N x$ for all $x \in G$.
3. For $x, y \in G$, let $x \sim_{G} y$ if and only if there exists $g \in G$ such that $y=g x g^{-1}$. Show that \sim_{G} defines an equivalence relation on G.
Sol. Let $x \in G$. Then $x=1 x 1^{-1}$. Hence $x \sim_{G} x$. Suppose $x \sim_{G} y$. Then there exists $g \in G$ such that $y=g x g^{-1}$. We have $x=g^{-1} y\left(g^{-1}\right)^{-1}$. Since $g^{-1} \in G$, $y \sim_{G} x$ by definition. Suppose $x \sim_{G} y$ and $y \sim_{G} z$. Then there exist $g, g^{\prime} \in G$ such that $y=g x g^{-1}$ and $z=g^{\prime} y g^{\prime-1}$. Hence $z=g^{\prime} y g^{\prime-1}=g^{\prime} g x g^{-1} g^{\prime-1}=\left(g^{\prime} g\right) x\left(g^{\prime} g\right)^{-1}$. Hence $x \sim_{G} z$ as $g^{\prime} g \in G$. Therefore \sim_{G} is an equivalence relation.
4. Show that N is a normal subgroup of G if and only if N is a union of some equivalence classes with respect to \sim_{G}.
Sol. Suppose $x \in N$ and $x \sim_{G} y$. Then there exists $g \in G$ such that $y=g x g^{-1}$. Since N is normal in $G, y=g x g^{-1} \in g N g^{-1} \subseteq N$. Hence if $[x]$ is the equivalence class containing $x,[x] \subseteq N$. Therefore N is a union of equivalence classes. (The equivalence class containing x in this case is often written as x^{G}, and called the conjugacy class containing x. Therefore a normal subgroup of a group G is a union of conjugacy classes of G.)
5. Let C be an equivalence class with respect to \sim_{G}. Then $|C|=1$ if and only if every element of C commutes with all elements of G.
Sol. Suppose $C=\{c\}$. Since $c \sim_{G} g c g^{-1}, g c g^{-1}=c$. Hence $g c=c g$ and c commutes with all elements of G. Conversely if c commutes with all elements of G and $x \sim_{G} c$, then $x=g c g^{-1}$ for some $g \in G$. But by assumption on c, c commutes with g and $x=c$. Therefore C consists of c only. (The set of elements in G that commutes with all elements of G is called the center of G and denoted by $Z(G)$. Hence $Z(G)=\{x \in G \mid x g=g x$ for all $g \in G\}$. It is easy to see that $Z(G) \triangleleft G$. Moreover every subgroup H of $Z(G)$ is a normal subgroup of G.)

Quiz 7

Due: 10:00 a.m. June 4, 2007
Division: ID\#:
Let H and K be subgroups of a group G.

1. Show that $H \times K$ becomes a group by the following binary operation. For $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in$ $H \times K,\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1} h_{2}, k_{1} k_{2}\right)$.
2. Let $\alpha: H \times K \rightarrow G((h, k) \mapsto h k)$. Suppose α is a group homomorphism. Show that $h k=k h$ for all $h \in H$ and $k \in K$.
3. For the same mapping α in Problem 2, suppose that α is an injective homomorphism. Show that $H \cap K=1$.
4. Suppose $H K=G, H \cap K=1$ and both H and K are normal subgroups of G. Then the mapping α in Problem 2 is an isomorphism.

Solutions to Quiz 7

Let H and K be subgroups of a group G.

1. Show that $H \times K$ becomes a group by the following binary operation. For $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in$ $H \times K,\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1} h_{2}, k_{1} k_{2}\right)$.
Sol. Let $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right),\left(h_{3}, k_{3}\right) \in H \times K$. Then
(i) $\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right)\left(h_{3}, k_{3}\right)=\left(h_{1} h_{2}, k_{1} k_{2}\right)\left(h_{3}, k_{3}\right)=\left(h_{1} h_{2} h_{3}, k_{1} k_{2} k_{3}\right)$

$$
=\left(h_{1}, k_{1}\right)\left(h_{2} h_{3}, k_{2} k_{3}\right)=\left(h_{1}, k_{1}\right)\left(\left(h_{2}, k_{2}\right)\left(h_{3}, k_{3}\right)\right) .
$$

(ii) $\left(h_{1}, k_{1}\right)\left(1_{H}, 1_{K}\right)=\left(h_{1}, k_{1}\right)=\left(1_{H}, 1_{K}\right)\left(h_{1}, k_{1}\right)$,
(iii) $\left(h_{1}, k_{1}\right)\left(h_{1}^{-1}, k_{1}^{-1}\right)=\left(1_{H}, 1_{K}\right)=\left(h_{1}^{-1}, k_{1}^{-1}\right)\left(h_{1}, k_{1}\right)$. Hence $H \times K$ is a group.
2. Let $\alpha: H \times K \rightarrow G((h, k) \mapsto h k)$. Suppose α is a group homomorphism. Show that $h k=k h$ for all $h \in H$ and $k \in K$.

Sol. Let $h \in H$ and $k \in K$. Then

$$
h k=\alpha((h, k))=\alpha((1, k)(h, 1))=\alpha((1, k)) \alpha((h, 1))=k h .
$$

Hence $h k=k h$ for all $h \in H$ and $k \in K$.
3. For the same mapping α in Problem 2, suppose that α is an injective homomorphism.

Show that $H \cap K=1$.
Sol. Let $x \in H \cap K$. Since $\left(x, x^{-1}\right) \in H \times K$ and

$$
\alpha((1,1))=1=\alpha\left(\left(x, x^{-1}\right),\right.
$$

$(1,1)=\left(x, x^{-1}\right)$ as α is injective. Hence $x=1$. Therefore $H \cap K=1$.
4. Suppose $H K=G, H \cap K=1$ and both H and K are normal subgroups of G. Then the mapping α in Problem 2 is an isomorphism.

Sol. Let $h \in H$ and $k \in K$. Since both H and K are normal,

$$
K \ni\left(h k h^{-1}\right) k^{-1}=h\left(k h^{-1} k^{-1}\right) \in H .
$$

Hence $h k h^{-1} k^{-1}=1$ as $H \cap K=1$. Therefore $h k=k h$ for all $h \in H$ and $k \in K$. Let $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. Then
$\alpha\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right)=\alpha\left(\left(h_{1} h_{2}, k_{1} k_{2}\right)\right)=h_{1} h_{2} k_{1} k_{2}=h_{1} k_{1} h_{2} k_{2}=\alpha\left(\left(h_{1}, k_{1}\right)\right) \alpha\left(\left(h_{2}, k_{2}\right)\right)$.
Hence α is a group homomorphism. Suppose $\alpha\left(\left(h_{1}, k_{1}\right)\right)=\alpha\left(\left(h_{2}, k_{2}\right)\right)$. Then $h_{1} k_{1}=$ $h_{2} k_{2}$. Hence $h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1} \in H \cap K=1$. Therefore $h_{1}=h_{2}$ and $k_{1}=k_{2}$ in this case and α is injective. Since $G=H K, \alpha$ is surjective and α is an isormorphism as desired.

Quiz 8

Due: 10:00 a.m. June 13, 2007
Division: ID\#: Name:
Let G be a group and $\alpha: G \times G \rightarrow G\left((g, x) \mapsto g x g^{-1}\right)$.

1. Show that α defines a left action of G on itself.
2. For $x \in G$, show that $\operatorname{St}_{G}(x)=\{g \mid(g \in G) \wedge(\alpha(g, x)=x)\}$ is a subgroup of G.
3. For $g \in G$, let $\operatorname{Fix}(g)=\{x \mid(x \in G) \wedge(\alpha(g, x)=x)\}$. Show that $\operatorname{Fix}(g)=\operatorname{St}_{G}(g)$, where $\operatorname{St}_{G}(g)$ is the subgroup defined in the previous problem.
4. Show that the kernel of this action is $Z(G)=\{x \in G \mid x g=g x$ (for all $g \in G)\}$.
5. Let C be the equivalence class containing x defined in Quiz 6. Show that $\left|G: \operatorname{St}_{G}(x)\right|=|C|$.

Solutions to Quiz 8

Let G be a group and $\alpha: G \times G \rightarrow G\left((g, x) \mapsto g x g^{-1}\right)$.

1. Show that α defines a left action of G on itself.

Sol. Let $g \cdot x=\alpha(g, x)=g x g^{-1}$. Then

$$
g_{1} \cdot\left(g_{2} \cdot x\right)=g_{1} g_{2} x g_{2}^{-1} g_{1}^{-1}=\left(g_{1} g_{2}\right) x\left(g_{1} g_{2}\right)^{-1}=\left(g_{1} g_{2}\right) \cdot x .
$$

Moreover $1 \cdot x=1 x 1^{-1}=x$. Hence α defines a left action of G on itself.
Note that $G \times G \rightarrow G(x \mapsto g x)$ also defines a left action. But clearly the above α defines a different left action.
2. For $x \in G$, show that $\operatorname{St}_{G}(x)=\{g \mid(g \in G) \wedge(\alpha(g, x)=x)\}$ is a subgroup of G.

Sol. $\quad \operatorname{St}_{G}(x)=\{g \mid(g \in G) \wedge(\alpha(g, x)=x)\}$ is always a subgroup for all left actions. Let $g_{1}, g_{2} \in \operatorname{St}_{G}(x)$. Then $\alpha\left(g_{1}, x\right)=x$ and $\alpha\left(g_{2}, x\right)=x$. Firstly since $\alpha(1, x)=x, 1 \in \operatorname{St}_{G}(x)$. Secondly since

$$
\alpha\left(g_{1} g_{2}, x\right)=\alpha\left(g_{1}, \alpha\left(g_{2}, x\right)\right)=\alpha\left(g_{1}, x\right)=x,
$$

$g_{1} g_{2} \in \operatorname{St}_{G}(x)$. Thirdly

$$
\alpha\left(g_{1}^{-1}, x\right)=\alpha\left(g_{1}^{-1}, \alpha\left(g_{1}, x\right)\right)=\alpha\left(g_{1}^{-1} g_{1}, x\right)=\alpha(1, x)=x .
$$

Hence $g_{1}^{-1} \in \operatorname{St}_{G}(x)$ and $\operatorname{St}_{G}(x)$ is a subgroup of G, which is called the stabilizer of x.
3. For $g \in G$, let $\operatorname{Fix}(g)=\{x \mid(x \in G) \wedge(\alpha(g, x)=x)\}$. Show that $\operatorname{Fix}(g)=\operatorname{St}_{G}(g)$, where $\operatorname{St}_{G}(g)$ is the subgroup defined in the previous problem.
Sol. Since $\operatorname{St}_{G}(g)$ is a subgroup of G,

$$
\begin{aligned}
\operatorname{Fix}(g) & =\{x \mid(x \in G) \wedge(\alpha(g, x)=x)\}=\left\{x \in G \mid g x g^{-1}=x\right\} \\
& =\left\{x \in G \mid x^{-1} g x=g\right\}=\left\{y \in G \mid y g y^{-1}=g\right\}^{-1}=\operatorname{St}_{G}(g)^{-1} \\
& =\operatorname{St}_{G}(g) .
\end{aligned}
$$

4. Show that the kernel of this action is $Z(G)=\{x \in G \mid x g=g x$ (for all $g \in G)\}$.

Sol. Let K be the kernel of this action. Then

$$
\begin{aligned}
K & =\{g \in G \mid \alpha(g, x)=x \text { for all } x \in G\}=\left\{g \in G \mid g x g^{-1}=x \text { for all } x \in G\right\} \\
& =\{g \in G \mid g x=x g \text { for all } x \in G\}=Z(G) .
\end{aligned}
$$

5. Let C be the equivalence class containing x defined in Quiz 6. Show that $\left|G: \mathrm{St}_{G}(x)\right|=|C|$.
Sol. This follows from a general theorem (5.2.1) in the textbook. But we give a proof here in this particular case. Let $H=\operatorname{St}_{G}(x)$.

$$
\alpha\left(g_{1}, x\right)=\alpha\left(g_{2}, x\right) \Leftrightarrow g_{1} x g_{1}^{-1}=g_{2} x g_{2}^{-1} \Leftrightarrow g_{2}^{-1} g_{1} x\left(g_{2}^{-1} g_{1}\right)^{-1}=x \Leftrightarrow g_{2}^{-1} g_{1} \in H .
$$

Hence $\alpha\left(g_{1}, x\right)=\alpha\left(g_{2}, x\right) \Leftrightarrow g_{1} H=g_{2} H$. Since

$$
C=\left\{g x g^{-1} \mid g \in G\right\}=\{\alpha(g, x) \mid g \in G\},
$$

$|C|=|G: H|$ as desired.

