Quiz	1	
Division:	ID#:	Name:

1. Let d and e be integers satisfying $d \mid e$ and $e \mid d$. Show that e = d or -d.

- 2. Let a_1, a_2, \ldots, a_n be integers and e a common divisor of a_1, a_2, \ldots, a_n , i.e., $e \mid a_i$ for $i = 1, 2, \ldots, n$. Show that the following conditions are equivalent.
 - (a) $c \mid a_i \text{ for } i = 1, 2, \dots, n \Rightarrow c \mid e.$
 - (b) There exist integers x_1, \ldots, x_n such that $e = a_1x_1 + a_2x_2 + \cdots + a_nx_n$.

3. Find all elements $[a] \in \mathbb{Z}_{24}$ such that there exists $[x] \in \mathbb{Z}_{24}$ satisfying [a][x] = [1].

Message: What do you expect from this course? Any requests?

1. Let d and e be integers satisfying $d \mid e$ and $e \mid d$. Show that e = d or -d.

Sol. Since $d \mid e$ and $e \mid d$, there exist integers a and b such that e = ad, d = be. Hence if one of d or e is zero, then both are zero, and e = d or -d in this case. Suppose both d and e are nonzero. Since e = ad, d = be implies e = ad = abe, 1 = ab. Since both a and b are integers, we have a = 1 or -1. Since e = ad, e = dor e = -d.

2. Let a_1, a_2, \ldots, a_n be integers and e a common divisor of a_1, a_2, \ldots, a_n , i.e., $e \mid a_i$ for $i = 1, 2, \ldots, n$. Show that the following conditions are equivalent.

(a) $c \mid a_i$ for $i = 1, 2, \ldots, n \Rightarrow c \mid e$.

(b) There exist integers x_1, \ldots, x_n such that $e = a_1x_1 + a_2x_2 + \cdots + a_nx_n$.

Sol. Let $d = \gcd\{a_1, a_2, \ldots, a_n\}$. Then $d \ge 0$ and d satisfies $d \mid a_i$ for $i = 1, 2, \ldots, n$, and (a), (b).

Suppose e satisfies (a). Then $d \mid e$ by (a), and $e \mid d$ as d satisfies (a) by replacing e by d. Hence by 1, e = d or -d. Since d satisfies (b), e satisfies (b) as well.

Suppose *e* satisfies (b). Let *c* be an integer satisfying $c \mid a_i$ for i = 1, 2, ..., n. Since *e* has an expression $e = a_1x_1 + a_2x_2 + \cdots + a_nx_n$, $c \mid e$. This shows (a).

The above problem shows that the greatest common divisor of a_1, a_2, \ldots, a_n can also be defined as a nonnegative common divisor of a_1, a_2, \ldots, a_n satisfying (b).

3. Find all elements $[a] \in \mathbb{Z}_{24}$ such that there exists $[x] \in \mathbb{Z}_{24}$ satisfying [a][x] = [1]. Sol. Let $U(\mathbb{Z}_{24}) = \{[a] \in \mathbb{Z}_{24} \mid \text{There exists } [x] \in \mathbb{Z}_{24} \text{ such that } [a][x] = [1]\}$. Since [1] = [a][x] = [ax] by the definition of multiplication in \mathbb{Z}_{24} , $ax \equiv 1 \pmod{24}$. Hence there exists an integer y such that ax - 1 = 24y. Hence ax - 24y = 1. Let $d = \gcd\{a, 24\}$. Then $d \mid ax - 24y = 1$. So d = 1. On the other hand, if $\gcd\{a, 24\} = 1$, there exist integers x and y such that ax + 24y = 1. Thus [a][x] = [1 - 24y] = [1]. Hence $[a] \in U(\mathbb{Z}_{24})$. Therefore

$$U(\mathbf{Z}_{24}) = \{[a] \mid \gcd\{a, 24\} = 1, a \in \mathbf{Z}\} = \{[1], [5], [7], [11], [13], [17], [19], [23]\}.$$

Of course, you can find elements of $U(\mathbf{Z}_{24})$ by brute force. Please note that for all $[a] \in U(\mathbf{Z}_{24}), [a][a] = [1]$. In general the set of invertible elements in \mathbf{Z}_n is denoted by \mathbf{Z}_n^* . Hence $\mathbf{Z}_{24}^* = U(\mathbf{Z}_{24})$. It is a well-known fact that

$$[a][a] = [1]$$
 for all $[a] \in \mathbf{Z}_n^* \Leftrightarrow n \mid 24$.

ID#:

Division:

Due: 10:00 a.m. April 25, 2007

Let
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 8 & 1 & 2 & 6 & 3 & 7 \end{pmatrix}$$
, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 1 & 5 & 6 & 8 & 4 & 2 \end{pmatrix}$.

Name:

1. Compute $\pi\sigma\pi^{-1}$.

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles. (Do you recognize some similarity between σ and $\pi \sigma \pi^{-1}$?)

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a shortest?)

4. Express each of π and σ as a product of adjacent transpositions $(1, 2), (2, 3), \ldots, (7, 8)$. (Is it a shortest?)

5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Message: Any questions, comments or requests?

April 25, 2007

Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 8 & 1 & 2 & 6 & 3 & 7 \end{pmatrix}$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 1 & 5 & 6 & 8 & 4 & 2 \end{pmatrix}$.

1. Compute $\pi\sigma\pi^{-1}$.

Sol.

 $\begin{aligned} \pi \sigma \pi^{-1} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 8 & 1 & 2 & 6 & 3 & 7 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 1 & 5 & 6 & 8 & 4 & 2 \end{pmatrix} \begin{pmatrix} 5 & 4 & 8 & 1 & 2 & 6 & 3 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 6 & 1 & 3 & 8 & 7 & 4 & 5 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 6 & 1 & 3 & 8 & 7 & 4 & 5 \end{pmatrix}. \end{aligned}$

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles. (Do you recognize some similarity between σ and $\pi \sigma \pi^{-1}$?)

Sol.

$$\begin{split} \sigma &= (1,3)(2,7,4,5,6,8), \\ \pi \sigma \pi^{-1} &= (1,2,6,7,4,3)(5,8), \\ (&= (5,8)(4,3,1,2,6,7) = (\pi(1),\pi(3))(\pi(2),\pi(7),\pi(4),\pi(5),\pi(6),\pi(8))). \end{split}$$

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). (Is it a shortest?)

Sol.

$$\pi = (1,4)(1,2)(1,5)(3,7)(3,8) (= (1,5)(5,2)(2,4)(3,8)(8,7)), \sigma = (1,3)(2,8)(2,6)(2,5)(2,4)(2,7) (= (1,3)(2,7)(7,4)(4,5)(5,6)(6,8)).$$

Use the formula in Corollary 3.1.4. Both of these are shortest.

4. Express each of π and σ as a product of adjacent transpositions $(1, 2), (2, 3), \ldots, (7, 8)$. (Is it a shortest?)

Sol.

$$\pi = (7,8)(4,5)(6,7)(3,4)(4,5)(5,6)(6,7)(2,3)(3,4)(4,5)(1,2)(2,3)(3,4),$$

$$\sigma = (6,7)(5,6)(4,5)(5,6)(6,7)(7,8)(2,3)(3,4)(4,5)(5,6)(6,7)(7,8)(1,2)(2,3).$$

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The minimal number of adjacent transpositions required to express each permutation equals the number ℓ of the permutation to be calculated in the next problem. Can you prove this fact?

5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Sol. Since $\ell(\pi) = 13$, $\operatorname{sign}(\pi) = (-1)^{13} = -1$. Similarly since $\ell(\sigma) = (-1)^{14}$, $\operatorname{sign}(\pi) = (-1)^{14} = 1$. Since π is the product of 3 cycles including one 1 cycle, $\operatorname{sign}(\pi) = (-1)^{8-3} = -1$ by Cauchy's Formula in (3.1.9). Similarly σ is the product of 2 cycles, $\operatorname{sign}(\sigma) = (-1)^{8-2} = 1$.

Due: 10:00 a.m. May 7, 2007

Division: ID#: Name:

Let (M, \circ) be a monoid with identity element e, i.e., $x \circ e = x = e \circ x$ for all $x \in M$. Let $U = \{x \in M \mid \text{there exist } y, z \in M \text{ such that } x \circ y = e = z \circ x\}.$

1. Suppose $a \circ b = e = c \circ a = a \circ d$ for $a, b, c, d \in M$. Show that b = c = d.

2. Show that $e \in U$.

3. Show that if $a, b \in U$, then $a \circ b \in U$.

4. Show that (U, \circ) is a group.

Message: Any requests or questions?

Let (M, \circ) be a monoid with identity element e, i.e., $x \circ e = x = e \circ x$ for all $x \in M$. Let $U = \{x \in M \mid \text{there exist } y, z \in M \text{ such that } x \circ y = e = z \circ x\}.$

1. Suppose $a \circ b = e = c \circ a = a \circ d$ for $a, b, c, d \in M$. Show that b = c = d. Sol. Since

$$b = e \circ b = (c \circ a) \circ b = c \circ (a \circ b) = c \circ e = c$$

$$d = e \circ d = (c \circ a) \circ d = c \circ (a \circ d) = c \circ e = c.$$

Hence b = c = d.

- 2. Show that $e \in U$. Sol. Let y = z = e. Then $e \circ e = e = e \circ e$. Hence $e \in M$.
- 3. Show that if $a, b \in U$, then $a \circ b \in U$.

Sol. By the definition of U, there exist $a', a'', b', b'' \in M$ such that

$$a \circ a' = e = a'' \circ a$$
, and $b \circ b' = e = b'' \circ b$.

Let $y = b' \circ a'$ and $z = b'' \circ a''$. Then $(a \circ b) \circ y = (a \circ b) \circ (b' \circ a') = a \circ (b \circ (b' \circ a')) = a \circ ((b \circ b') \circ a') = a \circ (e \circ a') = a \circ a' = e.$ $z \circ (a \circ b) = (b'' \circ a'') \circ (a \circ b) = b'' \circ (a'' \circ (a \circ b)) = b'' \circ ((a'' \circ a) \circ b) = b'' \circ (e \circ b) = b'' \circ b = e.$ Hence $a \circ b \in U.$

4. Show that (U, \circ) is a group.

Sol. Let $a, b \in U$. Then $a \circ b \in U$ by 3. Hence $U \times U \to U((a, b) \mapsto a \circ b)$ defines a binary operation on U. Since $U \subset M$, for all $a, b, c \in U$, $a \circ (b \circ c) = (a \circ b) \circ c$ and associativity holds. By 2, $e \in U$. Suppose $a \in U$. Then there exists $y, z \in M$ such that $a \circ y = e = z \circ a$. Then by 1, y = z and $y \circ a = e = a \circ y$. Hence $y \in U$ and (M, \circ) is a group.

By 1, we have $U = \{x \in M \mid \text{there exist } y \in M \text{ such that } x \circ y = e = y \circ x\}$. Hence U is the set of invertible elements in M.

Quiz 4 ID#: Name:

1. Let G be a group and a an element of G. Show that a mapping $\ell_a : G \to G(x \mapsto ax)$ is a bijection.

2. Let G be a group and H a nonempty finite subset of G such that $xy \in H$ whenever $x, y \in H$. Show that H is a subgroup of G. (Hint: Let $a \in H$ and consider a mapping $\ell_a : H \to H (x \mapsto ax)$.)

3. Give an example that even if H is a nonempty subset of a group G such that $xy \in H$ whenever $x, y \in H$, H is not a subgroup of G. (Hint: Find such a subset in $(\mathbf{Z}, +)$.)

4. Find all subgroups of $(\mathbf{Z}_8, +)$. ([a] + [b] = [a + b] for all $a, b \in \mathbf{Z}$.)

5. Find all subgroups of (\mathbf{Z}_8^*, \cdot) $(\mathbf{Z}_8^*$ is the set of invertible elements in a monoid \mathbf{Z}_8 with respect to the multiplication $[a] \cdot [b] = [ab]$.)

1. Let G be a group and a an element of G. Show that a mapping $\ell_a : G \to G(x \mapsto ax)$ is a bijection.

Sol. Suppose $\ell_a(x) = \ell_a(y)$. Then ax = ay. By multiplying a^{-1} from the left we have x = y. Hence ℓ_a is injective. Let $x \in G$. Then $\ell_a(a^{-1}x) = x$. Hence ℓ_a is surjective.

2. Let G be a group and H a nonempty finite subset of G such that $xy \in H$ whenever $x, y \in H$. Show that H is a subgroup of G. (Hint: Let $a \in H$ and consider a mapping $\ell_a : H \to H (x \mapsto ax)$.)

Sol. Let *a* be an arbitrary element in *H* and ℓ_a a mapping $\ell_a : H \to H(x \mapsto ax)$. We can take at least one such *a* as *H* is nonempty. By assumption, $ax \in H$ and this mapping is well-defined. By 1 above, this mapping is injective. Since *H* is a finite set, ℓ_a is bijective. (Note that since ℓ_a is injective, $|H| = |\ell_a(H)|$ and $\ell_a(H) \subset H$.) Since $a \in H$, there is an element $e \in H$ such that $\ell_a(e) = a$. Since ae = a, *e* is the identity element. (This can be seen by multiplying a^{-1} on both hand sides from the left.) Hence $1 \in H$. Since there is also an element $a' \in H$ such that $\ell_a(a') = 1$, aa' = 1 implies $a' = a^{-1}$. Thus $a^{-1} \in H$. Therefore *H* is a subgroup of *G* by Proposition 4.1 (3,3,3).

- 3. Give an example that even if H is a nonempty subset of a group G such that $xy \in H$ whenever $x, y \in H$, H is not a subgroup of G. (Hint: Find such a subset in $(\mathbb{Z}, +)$.) Sol. Let $H = \mathbb{N}$. With respect to addition, H satisfies the required condition. But H is not a subgroup as the inverse of 1 is not in \mathbb{N} .
- 4. Find all subgroups of $(\mathbf{Z}_8, +)$. ([a] + [b] = [a + b] for all $a, b \in \mathbf{Z}$.)

Sol. $\mathbf{Z}_8 = \{[0], [1], [2], [3], [4], [5], [6], [7]\}$. Let H be a subgroup of \mathbf{Z}_8 . H must contain [0], the identity element of \mathbf{Z}_8 . If H contains [1], it must contain $[1] + [1] = [2], [1] + [2] = [3], \ldots$ and $H = \mathbf{Z}_8$. Similarly, If H contains [3], [5] or [7] then $H = \mathbf{Z}_8$. On the other hand, if H contains [4] then $H \supset \{[0], [4]\}, [2]$ or [6] then $H \supset \{[0], [6], [4], [2]\}$. Hence if $H \neq \mathbf{Z}_8$ or $H \neq \{[0]\}, H$ contains $\{[0], [4]\}$ or $\{[0], [2], [4], [6]\}$. It is easy to check that these are subgroups generated by [4] or [2] respectively. Hence these are groups. Moreover, there is no other because if H contains an extra element, then $H = \mathbf{Z}_8$. Therefore the following are the list of subgroups of \mathbf{Z}_8 .

$$\{[0\}, \{[0], [4]\}, \{[0], [2], [4], [6]\}, \mathbb{Z}_8.$$

5. Find all subgroups of (\mathbf{Z}_8^*, \cdot) $(\mathbf{Z}_8^*$ is the set of invertible elements in a monoid \mathbf{Z}_8 with respect to the multiplication $[a] \cdot [b] = [ab]$.)

Sol. It is easy to check that $\mathbf{Z}_8^* = \{[1], [3], [5], [7]\}$ and [1] is the identity element. Hence subgroups are

 $\{[1]\}, \{[1], [3]\}, \{[1], [5]\}, \{[1], [7]\}, \mathbf{Z}_8^*.$

Note that if a subgroup contains both [3] and [5], then it must contain [3][5] = [7] and it must be equal to \mathbb{Z}_8^* . Other cases are similar.

Division: ID#: Name:

- 1. Let H be a subgroup of a gourp G. You may use the fact that for a nonempty subset K of a group $G, K \leq G \Leftrightarrow (KK \subseteq K) \land (K^{-1} \subseteq K)$.
 - (a) For $x, y \in G$, show that $Hx = Hy \Leftrightarrow xy^{-1} \in H$.

(b) Show that $H = HH = HH^{-1} = H^{-1}$.

(c) Let K be a nonempty subset of a group G. Show that if $KK^{-1} \subseteq K$ then $K \leq G$.

2. Let $G = \mathbf{Z}_{15}$ and $K = \{[0], [5], [25]\} \subseteq \mathbf{Z}_{15}$. Show that K is a subgroup of a group G and find all distinct cosets of K in G.

- 1. Let H be a subgroup of a gourp G. You may use the fact that for a nonempty subset K of a group $G, K \leq G \Leftrightarrow (KK \subseteq K) \land (K^{-1} \subseteq K)$.
 - (a) For x, y ∈ G, show that Hx = Hy ⇔ xy⁻¹ ∈ H.
 Sol. (⇒) Since 1 ∈ H, x = 1x ∈ Hx = Hy. Hence there exists h ∈ H such that x = hy. By multiplying y⁻¹ from the right, we have xy⁻¹ = h ∈ H.
 (⇐) Suppose xy⁻¹ ∈ H. Since H is a subgroup of G, yx⁻¹ = (xy⁻¹)⁻¹ ∈ H. Hence

$$Hx = H(xy^{-1})y \subseteq HHy \subseteq Hy = H(yx^{-1})x \subseteq HHx \subseteq Hx.$$

Therefore $Hx \subseteq Hy \subseteq Hx$ and so Hx = Hy.

It is easy to check that for $x, y \in G$, $xy^{-1} \in H$ defines an equivalence relation on G. Hence another way to show (a) is to check [x] = Hx, where $[x] = \{z \in G \mid zx^{-1} \in H\}$, the equivalence class containing x. Note that $x \sim y \Leftrightarrow [x] = [y]$.

- (b) Show that $H = HH = HH^{-1} = H^{-1}$. Sol. Since $H \leq G$, $HH \subseteq H$ and $H^{-1} \subseteq H$. Let $h \in H$. Then $h^{-1} \in H$. Hence $h = (h^{-1})^{-1} \in H^{-1} \subseteq H$. Thus $H = H^{-1}$. Since $1 \in H$, for every $h \in H$, $h = h1 \in HH$. Hence $H \subseteq HH$ and HH = H. Since $H = H^{-1}$, $H = HH = HH^{-1}$ as desired.
- (c) Let K be a nonempty subset of a group G. Show that if $KK^{-1} \subseteq K$ then $K \leq G$. **Sol.** Since K is a nonempty subset of G, there exists an element k in K. Then $1 = kk^{-1} \in KK^{-1} \subseteq K$. Hence $1 \in K$. Let $x, y \in K$. Then $x^{-1} = 1x^{-1} \in KK^{-1} \subseteq K$. Hence $K^{-1} \subseteq K$. Thus $y^{-1} \in K$ and $xy = x(y^{-1})^{-1} \in KK^{-1} \subseteq K$. Therefore $KK \subseteq K$. We have $K \leq G$.
- 2. Let $G = \mathbb{Z}_{15}$ and $K = \{[0], [5], [25]\} \subseteq \mathbb{Z}_{15}$. Show that K is a subgroup of a group G and find all distinct cosets of K in G.

Sol. First note that $Z_{15} = \{[0], [1], [2], [3], \dots, [14]\}$ and $|Z_{15}| = 15$. Moreover, $K = \{[0], [5], [10]\} = \langle [5] \rangle \leq Z_{15}$. By Langrange's Theorem, $|Z_{15} : K| = 15/3 = 5$.

$$\mathbf{Z}_{15}/K = \{K, [1] + K, [2] + K, [3] + K, [4] + K\}.$$

Note that if $0 \le i < j \le 4$, then 0 < j - i < 5 and $[j] - [i] = [j - i] \notin K$. Hence $[i] + K \ne [j] + K$ by 1 (a).

Due: 10:00 a.m. May 28, 2007

Division: ID#: Name:

Let N be a subgroup of a group G. Show the following.

1. Let $a \in G$. Then aN = N = Na if and only if $a \in N$.

2. $xNx^{-1} \subseteq N$ for all $x \in G - N \Rightarrow xN = Nx$ for all $x \in G$. $(G - N = \{x \in G \mid x \notin N\}$.)

3. For $x, y \in G$, let $x \sim_G y$ if and only if there exists $g \in G$ such that $y = gxg^{-1}$. Show that \sim_G defines an equivalence relation on G.

4. Show that N is a normal subgroup of G if and only if N is a union of some equivalence classes with respect to \sim_G .

5. Let C be an equivalence class with respect to \sim_G . Then |C| = 1 if and only if every element of C commutes with all elements of G.

Let N be a subgroup of a group G. Show the following.

- 1. Let $a \in G$. Then aN = N = Na if and only if $a \in N$.
 - **Sol.** Suppose aN = N. Since $1 \in N$, $a = a1 \in aN = N$, $a \in N$. Suppose $a \in N$. Then

$$N = aa^{-1}N \subseteq aN^{-1}N \subseteq aN \subseteq NN \subseteq N = Na^{-1}a \subseteq NN^{-1}a \subseteq Na \subseteq N.$$

Hence aN = N = Na.

This also follows from the following: $bN = aN \Leftrightarrow b^{-1}a \in N$ and $Nb = Na \Leftrightarrow ab^{-1} \in N$ by setting b = 1. Conversely if we know Problem 1, then above statements follow immediately as $bN = aN \Leftrightarrow a^{-1}bN = N$ and $Nb = Na \Leftrightarrow N = Nab^{-1}$.

2. $xNx^{-1} \subseteq N$ for all $x \in G - N \Rightarrow xN = Nx$ for all $x \in G$. $(G - N = \{x \in G \mid x \notin N\}$.)

Sol. Since xN = Nx holds for all $x \in N$ by Problem 1, the hypothesis $xNx^{-1} \subseteq N$ for all $x \in G - N$ is nothing but $xNx^{-1} \subseteq N$ for all $x \in G$. Hence by multiplying x from the right, $xN \subseteq Nx$. Since $xNx^{-1} \subseteq N$ holds for all $x \in G$, it holds for x^{-1} as well. Hence $x^{-1}Nx \subseteq N$, and we have $Nx \subseteq xN$. Therefore, xN = Nx for all $x \in G$.

3. For $x, y \in G$, let $x \sim_G y$ if and only if there exists $g \in G$ such that $y = gxg^{-1}$. Show that \sim_G defines an equivalence relation on G.

Sol. Let $x \in G$. Then $x = 1x1^{-1}$. Hence $x \sim_G x$. Suppose $x \sim_G y$. Then there exists $g \in G$ such that $y = gxg^{-1}$. We have $x = g^{-1}y(g^{-1})^{-1}$. Since $g^{-1} \in G$, $y \sim_G x$ by definition. Suppose $x \sim_G y$ and $y \sim_G z$. Then there exist $g, g' \in G$ such that $y = gxg^{-1}$ and $z = g'yg'^{-1}$. Hence $z = g'yg'^{-1} = g'gxg^{-1}g'^{-1} = (g'g)x(g'g)^{-1}$. Hence $x \sim_G z$ as $g'g \in G$. Therefore \sim_G is an equivalence relation.

4. Show that N is a normal subgroup of G if and only if N is a union of some equivalence classes with respect to \sim_G .

Sol. Suppose $x \in N$ and $x \sim_G y$. Then there exists $g \in G$ such that $y = gxg^{-1}$. Since N is normal in $G, y = gxg^{-1} \in gNg^{-1} \subseteq N$. Hence if [x] is the equivalence class containing $x, [x] \subseteq N$. Therefore N is a union of equivalence classes. (The equivalence class containing x in this case is often written as x^G , and called the conjugacy class containing x. Therefore a normal subgroup of a group G is a union of conjugacy classes of G.)

5. Let C be an equivalence class with respect to \sim_G . Then |C| = 1 if and only if every element of C commutes with all elements of G.

Sol. Suppose $C = \{c\}$. Since $c \sim_G gcg^{-1}$, $gcg^{-1} = c$. Hence gc = cg and c commutes with all elements of G. Conversely if c commutes with all elements of G and $x \sim_G c$, then $x = gcg^{-1}$ for some $g \in G$. But by assumption on c, c commutes with g and x = c. Therefore C consists of c only. (The set of elements in G that commutes with all elements of G is called the center of G and denoted by Z(G). Hence $Z(G) = \{x \in G \mid xg = gx \text{ for all } g \in G\}$. It is easy to see that $Z(G) \triangleleft G$. Moreover every subgroup H of Z(G) is a normal subgroup of G.)

Quiz 7 Division: ID#: Name:

Due: 10:00 a.m. June 4, 2007

Let H and K be subgroups of a group G.

1. Show that $H \times K$ becomes a group by the following binary operation. For $(h_1, k_1), (h_2, k_2) \in H \times K, (h_1, k_1)(h_2, k_2) = (h_1h_2, k_1k_2).$

2. Let $\alpha : H \times K \to G((h, k) \mapsto hk)$. Suppose α is a group homomorphism. Show that hk = kh for all $h \in H$ and $k \in K$.

3. For the same mapping α in Problem 2, suppose that α is an injective homomorphism. Show that $H \cap K = 1$.

4. Suppose HK = G, $H \cap K = 1$ and both H and K are normal subgroups of G. Then the mapping α in Problem 2 is an isomorphism.

June 4, 2007

Solutions to Quiz 7

Let H and K be subgroups of a group G.

- Show that H×K becomes a group by the following binary operation. For (h₁, k₁), (h₂, k₂) ∈ H×K, (h₁, k₁)(h₂, k₂) = (h₁h₂, k₁k₂).
 Sol. Let (h₁, k₁), (h₂, k₂), (h₃, k₃) ∈ H×K. Then

 (i) ((h₁, k₁)(h₂, k₂))(h₃, k₃) = (h₁h₂, k₁k₂)(h₃, k₃) = (h₁h₂h₃, k₁k₂k₃) = (h₁, k₁)(h₂h₃, k₂k₃) = (h₁, k₁)((h₂, k₂)(h₃, k₃)).
 (ii) (h₁, k₁)(1_H, 1_K) = (h₁, k₁) = (1_H, 1_K)(h₁, k₁),
 (iii) (h₁, k₁)(h₁⁻¹, k₁⁻¹) = (1_H, 1_K) = (h₁⁻¹, k₁⁻¹)(h₁, k₁). Hence H×K is a group.
- 2. Let $\alpha : H \times K \to G((h,k) \mapsto hk)$. Suppose α is a group homomorphism. Show that hk = kh for all $h \in H$ and $k \in K$.

Sol. Let $h \in H$ and $k \in K$. Then

$$hk = \alpha((h,k)) = \alpha((1,k)(h,1)) = \alpha((1,k))\alpha((h,1)) = kh$$

Hence hk = kh for all $h \in H$ and $k \in K$.

3. For the same mapping α in Problem 2, suppose that α is an injective homomorphism. Show that $H \cap K = 1$.

Sol. Let $x \in H \cap K$. Since $(x, x^{-1}) \in H \times K$ and

$$\alpha((1,1)) = 1 = \alpha((x, x^{-1}),$$

 $(1,1) = (x, x^{-1})$ as α is injective. Hence x = 1. Therefore $H \cap K = 1$.

4. Suppose HK = G, $H \cap K = 1$ and both H and K are normal subgroups of G. Then the mapping α in Problem 2 is an isomorphism.

Sol. Let $h \in H$ and $k \in K$. Since both H and K are normal,

$$K \ni (hkh^{-1})k^{-1} = h(kh^{-1}k^{-1}) \in H.$$

Hence $hkh^{-1}k^{-1} = 1$ as $H \cap K = 1$. Therefore hk = kh for all $h \in H$ and $k \in K$. Let $h_1, h_2 \in H$ and $k_1, k_2 \in K$. Then

$$\alpha((h_1,k_1)(h_2,k_2)) = \alpha((h_1h_2,k_1k_2)) = h_1h_2k_1k_2 = h_1k_1h_2k_2 = \alpha((h_1,k_1))\alpha((h_2,k_2)) = h_1h_2k_1k_2 = h_1k_1h_2k_2 = h_1k_1h$$

Hence α is a group homomorphism. Suppose $\alpha((h_1, k_1)) = \alpha((h_2, k_2))$. Then $h_1k_1 = h_2k_2$. Hence $h_2^{-1}h_1 = k_2k_1^{-1} \in H \cap K = 1$. Therefore $h_1 = h_2$ and $k_1 = k_2$ in this case and α is injective. Since G = HK, α is surjective and α is an isomorphism as desired.

Quiz 8Due: 10:00 a.m. June 13, 2007Division:ID#:Name:Let G be a group and $\alpha: G \times G \to G((g, x) \mapsto gxg^{-1}).$

1. Show that α defines a left action of G on itself.

2. For $x \in G$, show that $\operatorname{St}_G(x) = \{g \mid (g \in G) \land (\alpha(g, x) = x)\}$ is a subgroup of G.

3. For $g \in G$, let $\operatorname{Fix}(g) = \{x \mid (x \in G) \land (\alpha(g, x) = x)\}$. Show that $\operatorname{Fix}(g) = \operatorname{St}_G(g)$, where $\operatorname{St}_G(g)$ is the subgroup defined in the previous problem.

4. Show that the kernel of this action is $Z(G) = \{x \in G \mid xg = gx \text{ (for all } g \in G)\}.$

5. Let C be the equivalence class containing x defined in Quiz 6. Show that $|G: \operatorname{St}_G(x)| = |C|.$

June 13, 2007

Let G be a group and $\alpha: G \times G \to G$ $((g, x) \mapsto gxg^{-1})$.

1. Show that α defines a left action of G on itself.

Sol. Let $g \cdot x = \alpha(g, x) = gxg^{-1}$. Then

$$g_1 \cdot (g_2 \cdot x) = g_1 g_2 x g_2^{-1} g_1^{-1} = (g_1 g_2) x (g_1 g_2)^{-1} = (g_1 g_2) \cdot x.$$

Moreover $1 \cdot x = 1x1^{-1} = x$. Hence α defines a left action of G on itself.

Note that $G \times G \to G$ ($x \mapsto gx$) also defines a left action. But clearly the above α defines a different left action.

2. For $x \in G$, show that $\operatorname{St}_G(x) = \{g \mid (g \in G) \land (\alpha(g, x) = x)\}$ is a subgroup of G. Sol. $\operatorname{St}_G(x) = \{g \mid (g \in G) \land (\alpha(g, x) = x)\}$ is always a subgroup for all left actions. Let $g_1, g_2 \in \operatorname{St}_G(x)$. Then $\alpha(g_1, x) = x$ and $\alpha(g_2, x) = x$. Firstly since $\alpha(1, x) = x, 1 \in \operatorname{St}_G(x)$. Secondly since

$$\alpha(g_1g_2, x) = \alpha(g_1, \alpha(g_2, x)) = \alpha(g_1, x) = x,$$

 $g_1g_2 \in \operatorname{St}_G(x)$. Thirdly

$$\alpha(g_1^{-1}, x) = \alpha(g_1^{-1}, \alpha(g_1, x)) = \alpha(g_1^{-1}g_1, x) = \alpha(1, x) = x.$$

Hence $g_1^{-1} \in \operatorname{St}_G(x)$ and $\operatorname{St}_G(x)$ is a subgroup of G, which is called the stabilizer of x.

- 3. For $g \in G$, let $\operatorname{Fix}(g) = \{x \mid (x \in G) \land (\alpha(g, x) = x)\}$. Show that $\operatorname{Fix}(g) = \operatorname{St}_G(g)$, where $\operatorname{St}_G(g)$ is the subgroup defined in the previous problem.
 - **Sol.** Since $St_G(g)$ is a subgroup of G,

$$Fix(g) = \{x \mid (x \in G) \land (\alpha(g, x) = x)\} = \{x \in G \mid gxg^{-1} = x\} \\ = \{x \in G \mid x^{-1}gx = g\} = \{y \in G \mid ygy^{-1} = g\}^{-1} = St_G(g)^{-1} \\ = St_G(g).$$

4. Show that the kernel of this action is $Z(G) = \{x \in G \mid xg = gx \text{ (for all } g \in G)\}$. Sol. Let K be the kernel of this action. Then

$$K = \{g \in G \mid \alpha(g, x) = x \text{ for all } x \in G\} = \{g \in G \mid gxg^{-1} = x \text{ for all } x \in G\}$$
$$= \{g \in G \mid gx = xg \text{ for all } x \in G\} = Z(G).$$

5. Let C be the equivalence class containing x defined in Quiz 6. Show that $|G: \operatorname{St}_G(x)| = |C|.$

Sol. This follows from a general theorem (5.2.1) in the textbook. But we give a proof here in this particular case. Let $H = \text{St}_G(x)$.

$$\alpha(g_1, x) = \alpha(g_2, x) \Leftrightarrow g_1 x g_1^{-1} = g_2 x g_2^{-1} \Leftrightarrow g_2^{-1} g_1 x (g_2^{-1} g_1)^{-1} = x \Leftrightarrow g_2^{-1} g_1 \in H.$$

Hence $\alpha(g_1, x) = \alpha(g_2, x) \Leftrightarrow g_1 H = g_2 H$. Since

$$C = \{gxg^{-1} \mid g \in G\} = \{\alpha(g, x) \mid g \in G\},\$$

|C| = |G:H| as desired.