Quiz 1

ID \#:
Name:
Let m be a positive integer. Let $[a]=\{a+m q \mid q \in \boldsymbol{Z}\}$ denote the congruence class modulo m containing a, and $\boldsymbol{Z}_{m}=\{[a] \mid a \in \boldsymbol{Z}\}$.

1. Show that the sum defined by $[a]+[b]=[a+b]$ is well-defined, i.e., if $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$ for $a, a^{\prime}, b, b^{\prime} \in \boldsymbol{Z}$, then $[a+b]=\left[a^{\prime}+b^{\prime}\right]$.
2. Show that the product defined by $[a] \cdot[b]=[a \cdot b]$ is well-defined, i.e., if $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$ for $a, a^{\prime}, b, b^{\prime} \in \boldsymbol{Z}$, then $[a \cdot b]=\left[a^{\prime} \cdot b^{\prime}\right]$.
3. Let $m=14$. Find all elements $[a] \in \boldsymbol{Z}_{14}$ such that there exists $x \in \boldsymbol{Z}_{14}$ satisfying $[a][x]=[1]$.
4. Let $[a]^{6}=[a][a][a][a][a][a]$ in \boldsymbol{Z}_{14}. Show that if $\operatorname{gcd}\{a, 14\}=1$, then $[a]^{6}=[1]$.
5. Let a be an integer such that $\operatorname{gcd}\{a, 14\}=1$. Show that $14 \mid\left(a^{6}-1\right)$.

Solutions to Quiz 1

Division: ID\#: Name:

Let m be a positive integer. Let $[a]=\{a+m q \mid q \in \boldsymbol{Z}\}$ denote the congruence class modulo m containing a, and $\boldsymbol{Z}_{m}=\{[a] \mid a \in \boldsymbol{Z}\}$.

1. Show that the sum defined by $[a]+[b]=[a+b]$ is well-defined, i.e., if $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$ for $a, a^{\prime}, b, b^{\prime} \in \boldsymbol{Z}$, then $[a+b]=\left[a^{\prime}+b^{\prime}\right]$.

Sol. Observe that $[c]=\left[c^{\prime}\right]$ if and only if $m \mid\left(c-c^{\prime}\right)$. (See p.24.) So if $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right], m \mid\left(a-a^{\prime}\right)$ and $m \mid\left(b-b^{\prime}\right)$. Thus $m \mid\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=(a+b)-\left(a^{\prime}+b^{\prime}\right)$. Thus $[a+b]=\left[a^{\prime}+b^{\prime}\right]$.
In mathematics the term "well-defined" is often used. In this particular case, welldefinedness stands for $[a]+[b]=[a+b]$ actually defines a binary operation, that is if $[a]$ and $[b]$ are given $[a+b]$ is uniquely determined regardless of expressions of $[a]$ and $[b]$. Note that there are many expressions of elements $[a]$ and $[b]$ as $[a]=[a+m p]$ and $[b]=[b+m q]$ for any integers p and q. What we showed above is that regardless of the expressions $[a+b]$ or $[a+m p+b+m q]$ gives the same member in \boldsymbol{Z}_{m}. Therefore we can carry out computations in \boldsymbol{Z}_{m} freely using this definition.
2. Show that the product defined by $[a] \cdot[b]=[a \cdot b]$ is well-defined, i.e., if $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$ for $a, a^{\prime}, b, b^{\prime} \in \boldsymbol{Z}$, then $[a \cdot b]=\left[a^{\prime} \cdot b^{\prime}\right]$.
Sol. Suppose $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$. Then $m \mid\left(a-a^{\prime}\right)$ and $m \mid\left(b-b^{\prime}\right)$. Therefore

$$
m \mid\left(a-a^{\prime}\right) b+a^{\prime}\left(b-b^{\prime}\right)=a b-a^{\prime} b+a^{\prime} b-a^{\prime} b^{\prime}=a b-a^{\prime} b^{\prime} .
$$

Thus $[a b]=\left[a^{\prime} b^{\prime}\right]$.
3. Let $m=14$. Find all elements $[a] \in \boldsymbol{Z}_{14}$ such that there exists $x \in \boldsymbol{Z}_{14}$ satisfying $[a][x]=[1]$.
Sol. Let $d=\operatorname{gcd}\{a, 14\}$. If $[1]=[a][x]=[a x]$ then there exists $q \in \boldsymbol{Z}$ such that $a x=1+14 q$. Since $d \mid(a x-14 q)=1, d=1$. Hence $[x] \in\{[1],[3],[5],[9],[11],[13]\}$. Observe that

$$
[1][1]=[1],[3][5]=[5][3]=[1],[9][11]=[-3][-5]=[1],[13][13]=[-1][-1]=[1] .
$$

Hence all elements in the set $U=\{[1],[3]$, [5], [9], [11], [13]\} have the property.
See (2.3.5) and (2.3.6). U is often written as \boldsymbol{Z}_{14}^{*}. (See p.41.)
4. Let $[a]^{6}=[a][a][a][a][a][a]$ in \boldsymbol{Z}_{14}. Show that if $\operatorname{gcd}\{a, 14\}=1$, then $[a]^{6}=[1]$.

Sol. $[3]^{2}=[3][3]=[9],[3]^{3}=[9][3]=[-5][3]=[-15]=[-1]=[13],[3]^{4}=$ $[-1][3]=[-3]=[11],[3]^{5}=[-3][3]=[-9]=[5],[3]^{6}=[1]$. Since every element of U above is written as a power of [3], say $[a]=[3]^{i},[a]^{6}=\left([3]^{i}\right)^{6}=\left([3]^{6}\right)^{i}=[1]$.
We can also use (2.3.4). Since 7 is a prime, we have $7 \mid\left(a^{7}-a\right)=a\left(a^{6}-1\right)$. Since a is relatively prime to 14 , it is relatively prime to 7 . Hence by $(2.2 .5) 7 \mid\left(a^{6}-1\right)$. Since a is odd and $a^{6}-1$ is even, $14 \mid\left(a^{6}-1\right)$. This implies $[a]^{6}=[1]$.
5. Let a be an integer such that $\operatorname{gcd}\{a, 14\}=1$. Show that $14 \mid\left(a^{6}-1\right)$.

Sol. Since $[1]=[a]^{6}=\left[a^{6}\right] .14 \mid\left(a^{6}-1\right)$.

Quiz 2

Due: 10:00 a.m. April 26, 2006
Division:
ID\#:
Name:

Let $\pi=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 1 & 5 & 6 & 2 & 7 & 8\end{array}\right), \sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 5 & 7 & 2 & 1 & 3 & 6\end{array}\right)$.

1. Compute $\pi \sigma \pi^{-1}$.
2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles.
3. Express each of π and σ as a product of transpositions (2-cycles (i, j)).
4. Express each of π and σ as a product of adjacent transpositions $(1,2),(2,3), \ldots,(7,8)$.
5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Message: Any questions, comments or requests?

Solutions to Quiz 2

$$
\text { Let } \pi=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 3 & 1 & 5 & 6 & 2 & 7 & 8
\end{array}\right), \sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 4 & 5 & 7 & 2 & 1 & 3 & 6
\end{array}\right) \text {. }
$$

1. Compute $\pi \sigma \pi^{-1}$.

Sol.

$$
\begin{aligned}
& \pi \sigma \pi^{-1} \\
& \quad=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 3 & 1 & 5 & 6 & 2 & 7 & 8
\end{array}\right)\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 4 & 5 & 7 & 2 & 1 & 3 & 6
\end{array}\right)\left(\begin{array}{llllllll}
4 & 3 & 1 & 5 & 6 & 2 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}\right) \\
& =\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 4 & 5 & 8 & 7 & 3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles.

Sol.

$$
\begin{aligned}
\sigma & =(1,8,6)(2,4,7,3,5), \\
\pi \sigma \pi^{-1} & =(2,4,8)(1,6,3,5,7) \\
(& =(4,8,2)(3,5,7,1,6)=(\pi(1), \pi(8), \pi(6))(\pi(2), \pi(4), \pi(7), \pi(3), \pi(5)) .)
\end{aligned}
$$

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)).

Sol.

$$
\begin{aligned}
& \pi=(1,3)(1,2)(1,6)(1,5)(1,4)(=(1,4)(4,5)(5,6)(6,2)(2,3)) \\
& \sigma=(1,6)(1,8)(2,5)(2,3)(2,7)(2,4)(=(1,8)(8,6)(2,4)(4,7)(7,3)(3,5))
\end{aligned}
$$

Use the formula in Corollary 3.1.4.
4. Express each of π and σ as a product of adjacent transpositions (1,2), (2, 3), $\ldots,(7,8)$.

Sol.

$$
\begin{aligned}
\pi= & (2,3)(1,2)(2,3)(1,2)(5,6)(4,5)(3,4)(2,3)(1,2)(2,3)(3,4)(4,5)(5,6)(4,5)(3,4) \\
& (2,3)(1,2)(2,3)(3,4)(4,5)(3,4)(2,3)(1,2)(2,3)(3,4) \\
= & (3.4)(2,3)(3,4)(4,5)(5,6)(1,2)(2,3) \text { Shortest! } \\
\sigma= & (7,8)(6,7)((5,6)(4,5)(3,4)(2,3)(1,2)(7,8)(4,5)(3,4)(2,3)(5,6)(4,5)(3,4) \\
& (6,7)(5,6)(4,5)(5,6) \text { Shortest! }
\end{aligned}
$$

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The minimal number of adjacent transpositions required to express each permutation equals the number ℓ of the permutation to be calculated in the next problem. Can you prove this fact?
5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Sol. Since $\ell(\pi)=7, \operatorname{sign}(\pi)=(-1)^{7}=-1$. Similarly since $\ell(\sigma)=(-1)^{18}$, $\operatorname{sign}(\pi)=(-1)^{18}=1$. Since π is the product of 3 cycles, $\operatorname{sign}(\pi)=(-1)^{8-3}=-1$ by Cauchy's Formula in (3.1.9). Similarly σ is the product of 2 cycles, $\operatorname{sign}(\sigma)=$ $(-1)^{8-2}=1$.

Quiz 3

Division:

ID\#:
Name:

1. Let S be the subset of $\boldsymbol{Z}_{14}=\{[a] \mid a \in \boldsymbol{Z}\}=\{[0],[1], \ldots,[13]\} \quad\left([a]=[a]_{14}=\right.$ $\{a+14 q \mid q \in \boldsymbol{Z}\})$ specified below and define $[a] \cdot[b]=[a \cdot b]$. Say in each case whether (S, \cdot) is a semigroup, a monoid, a group, or none of these.
(a) $S=\{[1],[3],[5],[7],[9],[11],[13]\} ;$
(b) $S=\{[1],[3],[5],[9],[11],[13]\} ;$
(c) $S=\{[2],[4],[8]\} ;$
(d) $S=\{[0],[2],[4],[6],[8],[10],[12]\}$.
2. Let (M, \circ) be a semigroup with the following two conditions: (i) There exists an element e such that for every $x \in M, x \circ e=x$. (ii) For each element $x \in M$ there exists $x^{\prime} \in M$ such that $x \circ x^{\prime}=e$.
(a) Show that e is an identity element, i.e., $x \circ e=x=e \circ x$ for every $x \in M$. (Hint: Let $x^{\prime}, x^{\prime \prime} \in M$ such that $x \circ x^{\prime}=e=x^{\prime} \circ x^{\prime \prime}$, which are guaranteed to exist by (ii). Compute $x \circ x^{\prime} \circ x \circ x^{\prime} \circ x^{\prime \prime}$ in two ways to show $e \circ x=x$.)
(b) Show that (M, \circ) is a group.
3. Define a binary operation $*$ on a set $S=\{a, b\}$ so that $(S, *)$ is a semigroup satisfying the following conditions (i) and (ii') but not a monoid: (i) There exists an element e such that for every $x \in S, x * e=x$. (ii') For each element $x \in S$ there exists $x^{\prime} \in S$ such that $x^{\prime} * x=e$.

Solutions to Quiz 3

1. Let S be the subset of $\boldsymbol{Z}_{14}=\{[a] \mid a \in \boldsymbol{Z}\}=\{[0],[1], \ldots,[13]\}\left([a]=[a]_{14}=\right.$ $\{a+14 q \mid q \in \boldsymbol{Z}\})$ specified below and define $[a] \cdot[b]=[a \cdot b]$. Say in each case whether ($S, \cdot \cdot$) is a semigroup, a monoid, a group, or none of these.

Since all of these subsets are closed under multiplication and $\left(\boldsymbol{Z}_{14}, \cdot\right)$ is a semigroup (and a monoid with [1] as its inverse), these are either a semigroup, a monoid or a group.
(a) $S=\{[1],[3],[5],[7],[9],[11],[13]\} ;$

Sol. A monoid with [1] as its identity element. [7] does not have its inverse.
(b) $S=\{[1],[3],[5],[9],[11],[13]\} ;$

Sol. A group with [1] as its identity element, and $[1]^{-1}=[1],[3]^{-1}=[5],[5]^{-1}=$ $[3],[9]^{-1}=[11],[11]^{-1}=[9],[13]^{-1}=[13]$. This group is denoted by \boldsymbol{Z}_{14}^{*}. See p. 41 (iv).
(c) $S=\{[2],[4],[8]\}$;

Sol. A group with [8] as its identity element.
(d) $S=\{[0],[2],[4],[6],[8],[10],[12]\}$.

Sol. A semigroup.
2. Let (M, \circ) be a semigroup with the following two conditions: (i) There exists an element e such that for every $x \in M, x \circ e=x$. (ii) For each element $x \in M$ there exists $x^{\prime} \in M$ such that $x \circ x^{\prime}=e$.
(a) Show that e is an identity element, i.e., $x \circ e=x=e \circ x$ for every $x \in M$. (Hint: Let $x^{\prime}, x^{\prime \prime} \in M$ such that $x \circ x^{\prime}=e=x^{\prime} \circ x^{\prime \prime}$, which are guaranteed to exist by (ii). Compute $x \circ x^{\prime} \circ x \circ x^{\prime} \circ x^{\prime \prime}$ in two ways to show $e \circ x=x$.)
Sol. It suffices to show that $e \circ x=x$ for every $x \in M$. Let $x \in M$. Then by the condition (ii), there exists $x^{\prime} \in M$ such that $x \circ x^{\prime}=e$. Since $x^{\prime} \in M$, there exists $x^{\prime \prime} \in M$ such that $x^{\prime} \circ x^{\prime \prime}=e$ by (ii). Now we have $e \circ x=x$ by the following.

$$
\begin{aligned}
e \circ x & =(e \circ x) \circ e=\left(\left(x \circ x^{\prime}\right) \circ x\right) \circ\left(x^{\prime} \circ x^{\prime \prime}\right)=x \circ\left(\left(x^{\prime} \circ\left(x \circ x^{\prime}\right)\right) \circ x^{\prime \prime}\right) \\
& =x \circ\left(\left(x^{\prime} \circ e\right) \circ x^{\prime \prime}\right)=x \circ\left(x^{\prime} \circ x^{\prime \prime}\right)=x^{\prime} \circ e=x .
\end{aligned}
$$

(b) Show that (M, \circ) is a group.

Sol. It is enough to show that $x=x^{\prime \prime}$ if $x \circ x^{\prime}=e=x^{\prime} \circ x^{\prime \prime}$. First by (a), $e \circ x^{\prime \prime}=x^{\prime \prime}$. Hence $x^{\prime \prime}=e \circ x^{\prime \prime}=x \circ x^{\prime} \circ x^{\prime \prime}=x \circ e=x$.
3. Define a binary operation $*$ on a set $S=\{a, b\}$ so that $(S, *)$ is a semigroup satisfying the following conditions (i) and (ii') but not a monoid: (i) There exists an element e such that for every $x \in S, x * e=x$. (ii') For each element $x \in S$ there exists $x^{\prime} \in S$ such that $x^{\prime} * x=e$.
Sol. Let $a=e$ and $e * e=e, b * e=b, e * b=e$ and $b * b=b$. Then this operation gives the left most element in the product. Hence $(S, *)$ is a semigroup, and satisfies both (i) and (ii'), but neither $e=a$ nor b is an identity element.

Quiz 4

ID\#:
Name:

1. Find all subgroups of $\left(\boldsymbol{Z}_{6},+\right) .([a]+[b]=[a+b]$ for all $a, b \in \boldsymbol{Z}$. $)$
2. Find all subgroups of $\left(\boldsymbol{Z}_{9}^{*}, \cdot\right)\left(\boldsymbol{Z}_{9}^{*}\right.$ is the set of invertible elements in a monoid \boldsymbol{Z}_{9} with respect to the multiplication $[a] \cdot[b]=[a b]$.)
3. Show that $\left(\boldsymbol{Z}_{9}^{*}, \cdot\right)$ is a cyclic group.
4. Find all elements of the subgroup of S_{3} generated by the set $\{(1,2),(1,2,3)\}$.
5. Show that S_{3} is not a cyclic group.

Message: Any questions or requests?

Solutions to Quiz 4

1. Find all subgroups of $\left(\boldsymbol{Z}_{6},+\right) .([a]+[b]=[a+b]$ for all $a, b \in \boldsymbol{Z}$. $)$

Sol. $\quad \boldsymbol{Z}_{6}=\{[0],[1],[2],[3],[4],[5]\}$. Let H be a subgroup of \boldsymbol{Z}_{6}. If H contains [1], then H contains $[2]=[1]+[1],[3]=[2]+[1],[4]=[3]+1,[5]=[4]+[1]$ and $[0]=[5]+[1]$. Hence $H=\boldsymbol{Z}_{6}$. If H contains [5], then it must contain -[5] = [1]. Hence $H=\boldsymbol{Z}_{6}$. Suppose H contains neither [1] nor [5]. If H contains either [2] or $[4], H=\langle[2]\rangle=\{[0],[2],[4]\}$ as $-[2]=[4]$ because if H further contains [3], it contains $[5]=[2]+[3]$, a contradiction. If H does not contain [1], [2], [4], [5], then $H=\{[0]\}$ or $H=\langle[3]\rangle=\{[0],[3]\}$. Hence the following are the subgroups of \boldsymbol{Z}_{6}.

$$
\{[0]\},\{[0],[3]\},\{[0],[2],[4]\}, \text { and } \boldsymbol{Z}_{6} .
$$

2. Find all subgroups of $\left(\boldsymbol{Z}_{9}^{*}, \cdot\right)\left(\boldsymbol{Z}_{9}^{*}\right.$ is the set of invertible elements in a monoid \boldsymbol{Z}_{9} with respect to the multiplication $[a] \cdot[b]=[a b]$.)
Sol. $\quad \boldsymbol{Z}_{9}^{*}=\{[1],[2],[4],[5],[7],[8]\}$. Let H be a subgroup of \boldsymbol{Z}_{9}^{*}. Since $\langle[2]\rangle=$ $\langle[5]\rangle=\boldsymbol{Z}_{9}^{*}$, if H contains either [2] or [5], $H=\boldsymbol{Z}_{9}^{*}$. Suppose H contains neither [2] nor [5]. Since $\langle[4]\rangle=\langle[7]\rangle=\{[1],[4],[7]\}$ and if this subgroup further contain [8], then it must contain $[4][8]=[5]$. Hence we can conclude that the following are the subgroups of \boldsymbol{Z}_{9}^{*}.

$$
\{[1]\},\{[1],[8]\},\{[1],[4],[7]\}, \text { and } \boldsymbol{Z}_{9}^{*} .
$$

3. Show that $\left(\boldsymbol{Z}_{9}^{*}, \cdot\right)$ is a cyclic group.

Sol. Since $\boldsymbol{Z}_{9}^{*}=\langle[2]\rangle, \boldsymbol{Z}_{9}^{*}$ is a cyclic group.
Actually, \boldsymbol{Z}_{9}^{*} is isomorphic to \boldsymbol{Z}_{6} by the following correspondence:

$$
\alpha([1])=[0], \alpha([2])=[1], \alpha([4])=\alpha\left([2]^{2}\right)=[1]+[1]=[2], \ldots, \alpha\left([2]^{m}\right)=[m] .
$$

Please check that α is a bijection satisfying $\alpha(a \cdot b)=\alpha(a)+\alpha(b)$.
4. Find all elements of the subgroup of S_{3} generated by the set $\{(1,2),(1,2,3)\}$.

Sol. $(1,2)(1,2,3)=(2,3),(1,2,3)(1,2)=(1,3),(1,2,3)(1,2,3)=(1,3,2)$, and $(1,2)(1,2)=i d$. Hence all elements of S_{3} are in $\langle(1,2),(1,2,3)\rangle$.
The identity element can be recognized as a product of zero elements of the set $\{(1,2),(1,2,3)\}$. As for product, all elements are multiplied to the identity element.
5. Show that S_{3} is not a cyclic group.

Sol. $(1,2)^{2}=(1,3)^{2}=(2,3)^{2}=i d$ and $(1,2,3)^{3}=(1,3,2)^{3}=i d$. Hence there is no element of order 6 .

Since cyclic groups are commutative (why?) S_{3} cannot be cyclic as it is not commutative as indicated by the computation in the previous problem.

Quiz 5

Division:
ID\#:
Name:

1. Let H be a subgroup of a gourp G.
(a) For $x, y \in G$, show that $x H=y H \Leftrightarrow x^{-1} y \in H$.
(b) For $x, y \in G$, show that $x H=y H \Leftrightarrow H x^{-1}=H y^{-1}$.
(c) Let G / H be the set of left cosets of H in G, and let $H \backslash G$ be the set of right cosets of H in G. Then the mapping $\phi: G / H \rightarrow H \backslash G\left(x H \mapsto H x^{-1}\right)$ is a bijection.
2. Let $G=S_{3}$ be the symmetric group of degree three. Let $H=\langle(1,2)\rangle$. Determine G / H and $H \backslash G$ and the correspondence between them in the previous problem.

Solutions to Quiz 5

1. Let H be a subgroup of a gourp G.

First we prove the following: (i) $H H=H$, (ii) $H^{-1}=H$.
Proof. Since H is a subgroup of $G, H H \subset H$ and $H^{-1} \subset H$. Since $1 \in H$, $H=H 1 \subset H H$. Hence $H H=H$. Since $H=\left\{\left(h^{-1}\right)^{-1} \mid h \in H\right\} \subset H^{-1} \subset H$, $H=H^{-1}$.
(a) For $x, y \in G$, show that $x H=y H \Leftrightarrow x^{-1} y \in H$.

Sol. Suppose $x H=y H$. Since H is a subgroup of $G, 1 \in H$. Hence

$$
x^{-1} y \in x^{-1} y 1 \in x^{-1} y H=x^{-1} x H=1 H=H
$$

Conversely suppose $x^{-1} y \in H$. Then

$$
x H=x H H \supset x x^{-1} y H=y H=y H H \supset y\left(x^{-1} y\right)^{-1} H=y y^{-1} x H=x H .
$$

Hence $x H=y H$.
(b) For $x, y \in G$, show that $x H=y H \Leftrightarrow H x^{-1}=H y^{-1}$.

Sol. Suppose $x H=y H$. Then $(x H)^{-1}=(y H)^{-1}$. So

$$
H x^{-1}=H^{-1} x^{-1}=(x H)^{-1}=(y H)^{-1}=H^{-1} y^{-1}=H y^{-1} .
$$

Conversely suppose $H x^{-1}=H y^{-1}$. Then

$$
x H=x H^{-1}=\left(H x^{-1}\right)^{-1}=\left(H y^{-1}\right)^{-1}=y H^{-1}=y H .
$$

(c) Let G / H be the set of left cosets of H in G, and let $H \backslash G$ be the set of right cosets of H in G. Then the mapping $\phi: G / H \rightarrow H \backslash G\left(x H \mapsto H x^{-1}\right)$ is a bijection.
Sol. First the mapping is defined by $x H \mapsto(x H)^{-1}$. Since $(x H)^{-1}=$ $H^{-1} x^{-1}=H x^{-1},(x H)^{-1} \in H \backslash G$. Now ϕ is injective because $H x^{-1}=$ $\phi(x H)=\phi(y H)=H y^{-1}$ implies $x H=y H$ by the previous problem. ϕ is surjective because $\phi\left(x^{-1} H\right)=H x$ for every $H x \in H \backslash G$.
Let $P(G)$ denote the set of subsets of G. Then the mapping $\psi: P(G) \rightarrow$ $P(G)\left(A \mapsto A^{-1}\right)$ is a bijection as $\psi \circ \psi=i d_{P(X)}$. Moreover, $\psi(G / H) \subset H \backslash G$ as $\phi(x H)=H x^{-1}$. Since ϕ is defined by $\psi_{\mid G / H}, \phi$ is injective.
2. Let $G=S_{3}$ be the symmetric group of degree three. Let $H=\langle(1,2)\rangle$. Determine G / H and $H \backslash G$ and the correspondence between them in the previous problem.
Sol. $\quad G=S_{3}=\{1,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)\}$ and $H=\{1,(1,2)\}$. Since $|H|=2$ and $|G|=6,|G: H|=3 . G / H=\{H,(1,2,3) H,(1,3,2) H\}$ as $(1,2,3) \notin H$, $(1,3,2) \notin H$ and $(1,2,3)^{-1}(1,3,2)=(1,3,2)(1,3,2)=(1,2,3) \notin H$. Moreover, $(1,2,3) H=\{(1,2,3),(1,3)\}$ and $(1,3,2) H=\{(1,3,2),(2,3)\}$. Now $H(1,2,3)^{-1}=$ $H(1,3,2)=\{(1,3,2),(1,3)\}$ and $H(1,3,2)^{-1}=\{(1,3,2),(2,3)\}$.
Therefore $H \backslash G=\{H, H(1,3,2), H(1,2,3)\}$ and $\phi(H)=H, \phi((1,2,3) H)=H(1,3,2)$ and $\phi((1,3,2) H)=H(1,2,3)$.
In this particular case, by setting $K=\langle(1,2,3)\rangle=\{1,(1,2,3),(1,3,2)\}, G=K H=$ $H K$ and K is a left transversal and a right transversal of H in G.

Quiz 6

ID \#:
Name:

1. Let N be a subgroup of a group G. Show the following.

$$
x N x^{-1} \subseteq N \text { for all } x \in G \Rightarrow x N=N x \text { for all } x \in G .
$$

2. Let $\sigma \in S_{n}$. Show that $\sigma\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right), \sigma\left(i_{2}\right), \sigma\left(i_{3}\right), \ldots, \sigma\left(i_{m}\right)\right)$, where $\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right)$ is an m-cycle.
3. Show that if a normal subgroup N of S_{n} contains an m-cycle for some $2 \leq m \leq n$, then N contains all m-cycles.
4. Determine all normal subgroups of S_{3}.
5. Determine all normal subgropus of S_{4}.

Solutions to Quiz 6

1. Let N be a subgroup of a group G. Show the following.

$$
x N x^{-1} \subseteq N \text { for all } x \in G \Rightarrow x N=N x \text { for all } x \in G .
$$

Sol. By multiplying x from the right we have $x N \subseteq N x$ for all $x \in G$. Since $x N x^{-1} \subseteq N$ holds for all $x \in G$, it holds for x^{-1}. Hence $x^{-1} N\left(x^{-1}\right)^{-1} \subseteq N$. By multiplying x from the left we have $N x \subseteq x N$. Since x is arbitrary, we have $x N=N x$ for all $x \in G$.

Let $\ell_{x}: G \rightarrow G(g \mapsto x g)$. Then ℓ_{x} is a bijection. Note that multiplying x from the left to the sets $x^{-1} N x$ and N is to map these sets by ℓ_{x}. So $N x=\ell_{x}\left(x^{-1} N x\right) \subseteq$ $\ell(N)=x N$, or take $x^{-1} n x \in x^{-1} N x$ and map it by ℓ_{x}.
2. Let $\sigma \in S_{n}$. Show that $\sigma\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right), \sigma\left(i_{2}\right), \sigma\left(i_{3}\right), \ldots, \sigma\left(i_{m}\right)\right)$, where $\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right)$ is an m-cycle.

Sol. $\quad \sigma\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right) \sigma^{-1}\left(\sigma\left(i_{j}\right)\right)=\sigma\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right)\left(i_{j}\right)=\sigma\left(i_{i+1}\right)$ or $\sigma\left(i_{1}\right)$ if $j=m$. If $j \notin\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}, \sigma\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right) \sigma^{-1}(\sigma(j))=\sigma\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right)(j)=$ $\sigma(j)$. Therefore $\sigma\left(i_{1}, i_{2}, i_{3}, \ldots, i_{m}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right), \sigma\left(i_{2}\right), \sigma\left(i_{3}\right), \ldots, \sigma\left(i_{m}\right)\right)$.
3. Show that if a normal subgroup N of S_{n} contains an m-cycle for some $2 \leq m \leq n$, then N contains all m-cycles.
Sol. Suppose N contains an m-cycle $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$. Let $\left(j_{1}, j_{2}, \ldots, j_{m}\right)$ be an arbitrary m-cycle. Let

$$
\{1,2, \ldots, n\}=\left\{i_{1}, i_{2}, \ldots, i_{m}, i_{m+1}, \ldots, i_{n}\right\}=\left\{j_{1}, j_{2}, \ldots, j_{m}, j_{m+1}, \ldots, j_{n}\right\}
$$

and let $\sigma\left(i_{s}\right)=j_{s}$ for all s. Then by the previous problem, $\sigma\left(i_{1}, i_{2}, \ldots, i_{m}\right) \sigma^{-1}=$ $\left(j_{1}, j_{2}, \ldots, j_{m}\right)$ and this element belongs to N. So all m-cycles are contained in N.
4. Determine all normal subgroups of S_{3}.

Sol. Let N be a normal subgroup of S_{3}. N contains 1 . If N contains a transposition, i.e., a 2-cycle, then N contains all three transpositions by the previous problem. Then N contains at least four elements. Since $|N|$ divides $\left|S_{3}\right|=6$, we have $N=S_{3}$. Since $A_{3}=\{1,(1,2,3),(1,3,2)\}$ is a normal subgroup of G, N is either 1, A_{3} or S_{3}.
5. Determine all normal subgropus of S_{4}.

Sol. $\quad S_{4}$ consists of the identity element, 6 transpositions, 8 three cycles, and 6 four cycles and three elements of type $\left(i_{1}, i_{2}\right)\left(i_{3}, i_{4}\right)$. Let N be a normal subgroup of G. Then $|N|$ divides 24 and is a sum of 1 and some of $6,8,6,3$. The only possibilities are $1,1+3,1+3+8,1+3+6+8+6$. Thus $N=1$, $V=\{1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}, A_{4}$ or S_{4}. It is easy to check that V is also a normal subgroup and it is called the Klein's Four Group. Note that in the problem 3, the case of a product of two transpositions is not dealt, but the proof includes such case.

Quiz 7

Due: 10:00 a.m. June 7, 2006
Division:
ID\#:
Name:

1. Let $\alpha: G \rightarrow H$ be a group homomorphism. Let N be a normal subgroup of H, and $\alpha^{-1}(N)=\{x \in G \mid \alpha(x) \in N\}$.
(a) Show that $\alpha^{-1}(N)$ is a subgroup of G.
(b) Show that $\alpha^{-1}(N)$ is a normal subgroup of G.
2. Let H and K be groups, and $G=H \times K$. Show that $H \times K$ becomes a group by the following binary operation. For $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K,\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=$ $\left(h_{1} h_{2}, k_{1} k_{2}\right)$.
3. Let $\alpha: \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{3} \times \boldsymbol{Z}_{5} \quad\left(n \mapsto\left([n]_{3},[n]_{5}\right)\right)$, where $[n]_{3}$ is the equivalence class containing n modulo 3 , and $[n]_{5}$ is the equivalence class containing n modulo 5 .
(a) Show that α is a surjective homomorphism.
(b) Show that $\operatorname{Ker}(\alpha)=15 \boldsymbol{Z}=\{n \in \boldsymbol{Z}|15| n\}$ and that $\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{5}$ is a cyclic group.

Solutions to Quiz 7

1. Let $\alpha: G \rightarrow H$ be a group homomorphism. Let N be a normal subgroup of H, and $\alpha^{-1}(N)=\{x \in G \mid \alpha(x) \in N\}$.
(a) Show that $\alpha^{-1}(N)$ is a subgroup of G.

Sol. Let $K=\alpha^{-1}(N)$. Since $\alpha\left(1_{G}\right)=1_{H} \in N, 1_{G} \in K$. Let $x, y \in K$. Then $\alpha(x), \alpha(y) \in N$. Since N is a subgroup of $H, \alpha(x y)=\alpha(x) \alpha(y) \in N$ and $\alpha\left(x^{-1}\right)=\alpha(x)^{-1} \in N$. Therefore $x y \in K$ and $x^{-1} \in K$ and K is a subgroup of G.
(I used the fact that if α is a homomorphism, $\alpha(x y)=\alpha(x) \alpha(t), \alpha(1)=1$ and $\alpha\left(x^{-1}\right)=\alpha(x)^{-1}$. Then (3.3.3) is applied.)
(b) Show that $\alpha^{-1}(N)$ is a normal subgroup of G.

Sol. Let $g \in G$ and $x \in K=\alpha^{-1}(N)$. By (4.2.1) it suffices to show that $g x g^{-1} \in K$. Since N is a normal subgroup of $G, \alpha\left(g x g^{-1}\right)=\alpha(g) \alpha(x) \alpha(g)^{-1} \in$ $\alpha(g) N \alpha(g)^{-1} \subset N$. Hence $g x g^{-1} \in K$.
2. Let H and K be groups, and $G=H \times K$. Show that $H \times K$ becomes a group by the following binary operation. For $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K,\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=$ $\left(h_{1} h_{2}, k_{1} k_{2}\right)$.
Sol. Let $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right),\left(h_{3}, k_{3}\right) \in H \times K$. Then
(i) $\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right)\left(h_{3}, k_{3}\right)=\left(h_{1} h_{2}, k_{1} k_{2}\right)\left(h_{3}, k_{3}\right)=\left(h_{1} h_{2} h_{3}, k_{1} k_{2} k_{3}\right)$ $=\left(h_{1}, k_{1}\right)\left(h_{2} h_{3}, k_{2} k_{3}\right)=\left(h_{1}, k_{1}\right)\left(\left(h_{2}, k_{2}\right)\left(h_{3}, k_{3}\right)\right)$.
(ii) $\left(h_{1}, k_{1}\right)\left(1_{H}, 1_{K}\right)=\left(h_{1}, k_{1}\right)=\left(1_{H}, 1_{K}\right)\left(h_{1}, k_{1}\right)$,
(iii) $\left(h_{1}, k_{1}\right)\left(h_{1}^{-1}, k_{1}^{-1}\right)=\left(1_{H}, 1_{K}\right)=\left(h_{1}^{-1}, k_{1}^{-1}\right)\left(h_{1}, k_{1}\right)$. Hence $H \times K$ is a group.
3. Let $\alpha: \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{3} \times \boldsymbol{Z}_{5} \quad\left(n \mapsto\left([n]_{3},[n]_{5}\right)\right)$, where $[n]_{3}$ is the equivalence class containing n modulo 3 , and $[n]_{5}$ is the equivalence class containing n modulo 5 .
(a) Show that α is a surjective homomorphism.

Sol. First α is a homomorphism because

$$
\begin{aligned}
\alpha(m+n) & =\left([m+n]_{3},[m+n]_{5}\right)=\left([m]_{3}+[n]_{3},[m]_{5}+[n]_{5}\right) \\
& =\left([m]_{3},[m]_{5}\right)+\left([n]_{3},[n]_{5}\right)=\alpha(m)+\alpha(n) .
\end{aligned}
$$

We show that there is $n \in \boldsymbol{Z}$ such that $\alpha(n)=\left([a]_{3},[b]_{5}\right)$ for all $a, b \in \boldsymbol{Z}$. Since 3 and 5 are relatively prime, there exist $x, y \in \boldsymbol{Z}$ such that $3 x+5 y=1$. Thus let $n=3 b x+5 a y$. Then

$$
\begin{aligned}
\alpha(n) & =\left([3 b x+5 a y]_{3},[3 b x+5 a y]_{5}\right)=\left([5 a y]_{3},[3 b x]_{5}\right) \\
& =\left([a(1-3 x)]_{3},[b(1-5 y)]_{5}\right)=\left([a]_{3},[b]_{5}\right) .
\end{aligned}
$$

Therefore α is a surjective homomorphism. (See (2.3.7).)
(b) Show that $\operatorname{Ker}(\alpha)=15 \boldsymbol{Z}=\{n \in \boldsymbol{Z}|15| n\}$ and that $\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{5}$ is cyclic.

Sol. Since $\alpha(15 m)=\left([15 m]_{3},[15 m]_{5}\right)=\left([0]_{3},[0]_{5}\right), 15 \boldsymbol{Z} \subseteq \operatorname{Ker}(\alpha)$. If $n \in$ $\operatorname{Ker}(\alpha)$, then $[n]_{3}=[0]_{3}$ and $[n]_{5}=[0]_{5}$. Hence $3 \mid n$ and $5 \mid n$. Let $x, y \in \boldsymbol{Z}$ such that $3 x+5 y=1$. Then $n=3 x n+5 y n$. Since $3 \mid n$ and $5 \mid n$, both $3 x n$ and $5 y n$ are divisible by 15 . Hence n is divisible by 15 , and $n \in 15 \boldsymbol{Z}$. Since $\boldsymbol{Z} / 15 \boldsymbol{Z} \simeq \boldsymbol{Z}_{3} \times \boldsymbol{Z}_{5}$ and $\boldsymbol{Z} / \mathbf{1 5} \boldsymbol{Z}$ is cyclic, $\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{5}$ is cyclic as well.

Quiz 8

Due: 10:00 a.m. June 14, 2006
Division:
Name:
Let G be a group, H a subgroup and $\alpha: G \times G / H \rightarrow G / H((g, x H) \mapsto g x H)$.

1. Show that α defines a left action of G on the set G / H.
2. For $x \in G$, show that $\operatorname{St}_{G}(x H)=\{g \in G \mid \alpha(g, x H)=x H\}$ is a subgroup of G.
3. Show that $\mathrm{St}_{G}(x H)=x H x^{-1}$, where $\mathrm{St}_{G}(x H)$ is the subgroup defined above.
4. Suppose $|G: H|=3$. Let $N=\operatorname{Ker}(G, G / H)$. Show that $|G: N|=3$ or 6 .
5. Suppose $G=S_{3}$ and $H=\{1,(1,2)\}$. Determine $\operatorname{Ker}(G, G / H)$ in this case.

Solutions to Quiz 8

Let G be a group, H a subgroup and $\alpha: G \times G / H \rightarrow G / H((g, x H) \mapsto g x H)$.

1. Show that α defines a left action of G on the set G / H.

Sol. Let $\alpha(g, x H)=g \cdot x H$. (i) $g_{2} \cdot\left(g_{1} \cdot x H\right)=g_{2} g_{1} x H=\left(g_{2} g_{1}\right) \cdot x H$ and (i) holds. $1_{G} \cdot x H=1 x H=x H$ and (ii) holds. Hence α defines a left action of G on the set G / H.
2. For $x \in G$, show that $\operatorname{St}_{G}(x H)=\{g \in G \mid \alpha(g, x H)=x H\}$ is a subgroup of G.

Sol. Since $1_{G} \cdot x H=x H, 1_{G} \in \operatorname{St}_{G}(x H)$. Let $g_{1}, g_{2} \in \operatorname{St}_{G}(x H)$. Then $\left(g_{1} g_{2}\right) \cdot x H=$ $g_{1} \cdot\left(g_{2} \cdot x H\right)=g_{1} \cdot x H=x H$. Hence $g_{1} g_{2} \in \operatorname{St}_{G}(x H)$. Since $g_{1}^{-1} \cdot x H=g_{1}^{-1} \cdot\left(g_{1} \cdot x H\right)=$ $1_{G} \cdot x H=x H, g_{1}^{-1} \in \operatorname{St}_{G}(x H)$. Hence $\operatorname{St}_{G}(x H) \leq G$.
3. Show that $\mathrm{St}_{G}(x H)=x H x^{-1}$, where $\mathrm{St}_{G}(x H)$ is the subgroup defined above.

Sol. Let $g \in \operatorname{St}_{G}(x H)$. Then $g x H=x H$. Hence $g \in g x 1 x^{-1} \in g x H x^{-1}=x H x^{-1}$ and $\mathrm{St}_{G}(x H) \subseteq x H x^{-1}$. On the other hand if $g \in x H x^{-1}$, there exists $h \in H$ such that $g=x h x^{-1}$. Now $g x H=x h x^{-1} x H=x h H=x H$. So $x H x^{-1} \subseteq \operatorname{St}_{G}(x H)$. Note that $a H=b H$ if and only if $a^{-1} b \in H$, and hence we have $H=h H$ if and only if $h \in H$.
In particular $x H x^{-1} \leq G$.
4. Suppose $|G: H|=3$. Let $N=\operatorname{Ker}(G, G / H)$. Show that $|G: N|=3$ or 6 .

Sol. Since $|G / H|=3$, there is a homomorphism $\hat{\alpha}: G \rightarrow \operatorname{Sym}(G / H) \simeq S_{3}$. Hence by the isomorphism theorem, G / N is isomorphic to a subgroup of S_{3}. Since $N \leq H,|G: N|=|G: H||H: N|=3|H: N|$. Thus we have the result.
We used the fact that $\left|S_{3}\right|=6$ and $N=\bigcap_{x \in G} x H x^{-1} \subseteq H$.
5. Suppose $G=S_{3}$ and $H=\{1,(1,2)\}$. Determine $\operatorname{Ker}(G, G / H)$ in this case.

Sol. \quad Since $(1,3) H(1,3) \neq H, N<H$. Hence $|G: N|=6$, and $N=\operatorname{Ker}(G, G / H)=$ 1.

