Due: 10:00 a.m. April 19, 2006

Division: ID#:

Quiz 1

Name:

Let *m* be a positive integer. Let $[a] = \{a + mq \mid q \in \mathbb{Z}\}$ denote the congruence class modulo *m* containing *a*, and $\mathbb{Z}_m = \{[a] \mid a \in \mathbb{Z}\}$.

1. Show that the sum defined by [a] + [b] = [a + b] is well-defined, i.e., if [a] = [a'] and [b] = [b'] for $a, a', b, b' \in \mathbb{Z}$, then [a + b] = [a' + b'].

2. Show that the product defined by $[a] \cdot [b] = [a \cdot b]$ is well-defined, i.e., if [a] = [a'] and [b] = [b'] for $a, a', b, b' \in \mathbb{Z}$, then $[a \cdot b] = [a' \cdot b']$.

3. Let m = 14. Find all elements $[a] \in \mathbb{Z}_{14}$ such that there exists $x \in \mathbb{Z}_{14}$ satisfying [a][x] = [1].

4. Let $[a]^6 = [a][a][a][a][a][a]$ in \mathbb{Z}_{14} . Show that if $gcd\{a, 14\} = 1$, then $[a]^6 = [1]$.

5. Let a be an integer such that $gcd\{a, 14\} = 1$. Show that $14 \mid (a^6 - 1)$.

Message: What do you expect from this course? Any requests?

April 15, 2006

Solutions to Quiz 1

Division: ID#: Name:

Let *m* be a positive integer. Let $[a] = \{a + mq \mid q \in \mathbb{Z}\}$ denote the congruence class modulo *m* containing *a*, and $\mathbb{Z}_m = \{[a] \mid a \in \mathbb{Z}\}$.

1. Show that the sum defined by [a] + [b] = [a + b] is well-defined, i.e., if [a] = [a'] and [b] = [b'] for $a, a', b, b' \in \mathbb{Z}$, then [a + b] = [a' + b'].

Sol. Observe that [c] = [c'] if and only if $m \mid (c-c')$. (See p.24.) So if [a] = [a'] and $[b] = [b'], m \mid (a-a')$ and $m \mid (b-b')$. Thus $m \mid (a-a') + (b-b') = (a+b) - (a'+b')$. Thus [a+b] = [a'+b'].

In mathematics the term "well-defined" is often used. In this particular case, welldefinedness stands for [a] + [b] = [a+b] actually defines a binary operation, that is if [a] and [b] are given [a+b] is uniquely determined regardless of expressions of [a] and [b]. Note that there are many expressions of elements [a] and [b] as [a] = [a+mp] and [b] = [b+mq] for any integers p and q. What we showed above is that regardless of the expressions [a+b] or [a+mp+b+mq] gives the same member in \mathbb{Z}_m . Therefore we can carry out computations in \mathbb{Z}_m freely using this definition.

2. Show that the product defined by $[a] \cdot [b] = [a \cdot b]$ is well-defined, i.e., if [a] = [a'] and [b] = [b'] for $a, a', b, b' \in \mathbb{Z}$, then $[a \cdot b] = [a' \cdot b']$.

Sol. Suppose [a] = [a'] and [b] = [b']. Then $m \mid (a - a')$ and $m \mid (b - b')$. Therefore

$$m \mid (a - a')b + a'(b - b') = ab - a'b + a'b - a'b' = ab - a'b$$

Thus [ab] = [a'b'].

3. Let m = 14. Find all elements $[a] \in \mathbb{Z}_{14}$ such that there exists $x \in \mathbb{Z}_{14}$ satisfying [a][x] = [1].

Sol. Let $d = \gcd\{a, 14\}$. If [1] = [a][x] = [ax] then there exists $q \in \mathbb{Z}$ such that ax = 1 + 14q. Since $d \mid (ax - 14q) = 1$, d = 1. Hence $[x] \in \{[1], [3], [5], [9], [11], [13]\}$. Observe that

$$[1][1] = [1], [3][5] = [5][3] = [1], [9][11] = [-3][-5] = [1], [13][13] = [-1][-1] = [1].$$

Hence all elements in the set $U = \{[1], [3], [5], [9], [11], [13]\}$ have the property. See (2.3.5) and (2.3.6). U is often written as Z_{14}^* . (See p.41.)

- 4. Let $[a]^6 = [a][a][a][a][a][a][a]$ in \mathbb{Z}_{14} . Show that if $gcd\{a, 14\} = 1$, then $[a]^6 = [1]$. **Sol.** $[3]^2 = [3][3] = [9], [3]^3 = [9][3] = [-5][3] = [-15] = [-1] = [13], [3]^4 = [-1][3] = [-3] = [11], [3]^5 = [-3][3] = [-9] = [5], [3]^6 = [1]$. Since every element of U above is written as a power of [3], say $[a] = [3]^i, [a]^6 = ([3]^i)^6 = ([3]^6)^i = [1]$. We can also use (2.3.4). Since 7 is a prime, we have $7 \mid (a^7 - a) = a(a^6 - 1)$. Since a is relatively prime to 14, it is relatively prime to 7. Hence by (2.2.5) $7 \mid (a^6 - 1)$. Since a is odd and $a^6 - 1$ is even, $14 \mid (a^6 - 1)$. This implies $[a]^6 = [1]$.
- 5. Let *a* be an integer such that $gcd\{a, 14\} = 1$. Show that $14 \mid (a^6 1)$. Sol. Since $[1] = [a]^6 = [a^6]$. $14 \mid (a^6 - 1)$.

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles.

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)).

4. Express each of π and σ as a product of adjacent transpositions $(1, 2), (2, 3), \ldots, (7, 8)$.

5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Message: Any questions, comments or requests?

April 26, 2006

Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 1 & 5 & 6 & 2 & 7 & 8 \end{pmatrix}, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 5 & 7 & 2 & 1 & 3 & 6 \end{pmatrix}.$ 1. Compute $\pi \sigma \pi^{-1}$. Sol. $\pi \sigma \pi^{-1}$ $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 4 & 3 & 1 & 5 & 6 & 2 \end{pmatrix}$

 $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 1 & 5 & 6 & 2 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 5 & 7 & 2 & 1 & 3 & 6 \end{pmatrix} \begin{pmatrix} 4 & 3 & 1 & 5 & 6 & 2 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 4 & 5 & 8 & 7 & 3 & 1 & 2 \end{pmatrix}$

2. Express each of σ and $\pi \sigma \pi^{-1}$ as a product of disjoint cycles.

$$\begin{split} \sigma &= (1,8,6)(2,4,7,3,5), \\ \pi \sigma \pi^{-1} &= (2,4,8)(1,6,3,5,7) \\ (&= (4,8,2)(3,5,7,1,6) = (\pi(1),\pi(8),\pi(6))(\pi(2),\pi(4),\pi(7),\pi(3),\pi(5)).) \end{split}$$

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)). Sol.

$$\pi = (1,3)(1,2)(1,6)(1,5)(1,4) (= (1,4)(4,5)(5,6)(6,2)(2,3))$$

 $\sigma = (1,6)(1,8)(2,5)(2,3)(2,7)(2,4) (= (1,8)(8,6)(2,4)(4,7)(7,3)(3,5))$

Use the formula in Corollary 3.1.4.

- 4. Express each of π and σ as a product of adjacent transpositions $(1, 2), (2, 3), \dots, (7, 8)$. Sol.
 - $\begin{aligned} \pi &= (2,3)(1,2)(2,3)(1,2)(5,6)(4,5)(3,4)(2,3)(1,2)(2,3)(3,4)(4,5)(5,6)(4,5)(3,4) \\ &(2,3)(1,2)(2,3)(3,4)(4,5)(3,4)(2,3)(1,2)(2,3)(3,4) \\ &= (3.4)(2,3)(3,4)(4,5)(5,6)(1,2)(2,3) \ Shortest! \\ \sigma &= (7,8)(6,7)((5,6)(4,5)(3,4)(2,3)(1,2)(7,8)(4,5)(3,4)(2,3)(5,6)(4,5)(3,4) \\ &(6,7)(5,6)(4,5)(5,6) \ Shortest! \end{aligned}$

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The minimal number of adjacent transpositions required to express each permutation equals the number ℓ of the permutation to be calculated in the next problem. Can you prove this fact?

5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Sol. Since $\ell(\pi) = 7$, $\operatorname{sign}(\pi) = (-1)^7 = -1$. Similarly since $\ell(\sigma) = (-1)^{18}$, $\operatorname{sign}(\pi) = (-1)^{18} = 1$. Since π is the product of 3 cycles, $\operatorname{sign}(\pi) = (-1)^{8-3} = -1$ by Cauchy's Formula in (3.1.9). Similarly σ is the product of 2 cycles, $\operatorname{sign}(\sigma) = (-1)^{8-2} = 1$.

Quiz 3

Division:

ID#:

Name:

- 1. Let S be the subset of $Z_{14} = \{[a] \mid a \in Z\} = \{[0], [1], \dots, [13]\}$ $([a] = [a]_{14} = \{a + 14q \mid q \in Z\})$ specified below and define $[a] \cdot [b] = [a \cdot b]$. Say in each case whether (S, \cdot) is a semigroup, a monoid, a group, or none of these.
 - (a) $S = \{[1], [3], [5], [7], [9], [11], [13]\};$
 - (b) $S = \{[1], [3], [5], [9], [11], [13]\};$
 - (c) $S = \{ [2], [4], [8] \};$
 - (d) $S = \{[0], [2], [4], [6], [8], [10], [12]\}.$
- 2. Let (M, \circ) be a semigroup with the following two conditions: (i) There exists an element e such that for every $x \in M$, $x \circ e = x$. (ii) For each element $x \in M$ there exists $x' \in M$ such that $x \circ x' = e$.
 - (a) Show that e is an identity element, i.e., $x \circ e = x = e \circ x$ for every $x \in M$. (Hint: Let $x', x'' \in M$ such that $x \circ x' = e = x' \circ x''$, which are guaranteed to exist by (ii). Compute $x \circ x' \circ x \circ x' \circ x''$ in two ways to show $e \circ x = x$.)
 - (b) Show that (M, \circ) is a group.
- 3. Define a binary operation * on a set $S = \{a, b\}$ so that (S, *) is a semigroup satisfying the following conditions (i) and (ii') but not a monoid: (i) There exists an element e such that for every $x \in S$, x * e = x. (ii') For each element $x \in S$ there exists $x' \in S$ such that x' * x = e.

Message: Any requests or questions?

April 29, 2006

1. Let S be the subset of $\mathbf{Z}_{14} = \{[a] \mid a \in \mathbf{Z}\} = \{[0], [1], \dots, [13]\}$ $([a] = [a]_{14} = \{a + 14q \mid q \in \mathbf{Z}\})$ specified below and define $[a] \cdot [b] = [a \cdot b]$. Say in each case whether (S, \cdot) is a semigroup, a monoid, a group, or none of these.

Since all of these subsets are closed under multiplication and (\mathbf{Z}_{14}, \cdot) is a semigroup (and a monoid with [1] as its inverse), these are either a semigroup, a monoid or a group.

- (a) S = {[1], [3], [5], [7], [9], [11], [13]};
 Sol. A monoid with [1] as its identity element. [7] does not have its inverse.
- (b) S = {[1], [3], [5], [9], [11], [13]};
 Sol. A group with [1] as its identity element, and [1]⁻¹ = [1], [3]⁻¹ = [5], [5]⁻¹ = [3], [9]⁻¹ = [11], [11]⁻¹ = [9], [13]⁻¹ = [13]. This group is denoted by Z^{*}₁₄. See p.41 (iv).
- (c) S = {[2], [4], [8]};
 Sol. A group with [8] as its identity element.
- (d) $S = \{[0], [2], [4], [6], [8], [10], [12]\}.$ Sol. A semigroup.
- 2. Let (M, \circ) be a semigroup with the following two conditions: (i) There exists an element e such that for every $x \in M$, $x \circ e = x$. (ii) For each element $x \in M$ there exists $x' \in M$ such that $x \circ x' = e$.
 - (a) Show that e is an identity element, i.e., $x \circ e = x = e \circ x$ for every $x \in M$. (Hint: Let $x', x'' \in M$ such that $x \circ x' = e = x' \circ x''$, which are guaranteed to exist by (ii). Compute $x \circ x' \circ x \circ x' \circ x''$ in two ways to show $e \circ x = x$.) **Sol.** It suffices to show that $e \circ x = x$ for every $x \in M$. Let $x \in M$. Then by the condition (ii), there exists $x' \in M$ such that $x \circ x' = e$. Since $x' \in M$, there exists $x'' \in M$ such that $x' \circ x'' = e$ by (ii). Now we have $e \circ x = x$ by the following.

$$e \circ x = (e \circ x) \circ e = ((x \circ x') \circ x) \circ (x' \circ x'') = x \circ ((x' \circ (x \circ x')) \circ x'')$$
$$= x \circ ((x' \circ e) \circ x'') = x \circ (x' \circ x'') = x' \circ e = x.$$

(b) Show that (M, \circ) is a group.

Sol. It is enough to show that x = x'' if $x \circ x' = e = x' \circ x''$. First by (a), $e \circ x'' = x''$. Hence $x'' = e \circ x'' = x \circ x' \circ x'' = x \circ e = x$.

3. Define a binary operation * on a set $S = \{a, b\}$ so that (S, *) is a semigroup satisfying the following conditions (i) and (ii') but not a monoid: (i) There exists an element e such that for every $x \in S$, x * e = x. (ii') For each element $x \in S$ there exists $x' \in S$ such that x' * x = e.

Sol. Let a = e and e * e = e, b * e = b, e * b = e and b * b = b. Then this operation gives the left most element in the product. Hence (S, *) is a semigroup, and satisfies both (i) and (ii'), but neither e = a nor b is an identity element.

4

Quiz 4 Due: 10:00 a.m. May 15, 2006 Division: ID#:

1. Find all subgroups of $(\mathbf{Z}_6, +)$. ([a] + [b] = [a + b] for all $a, b \in \mathbf{Z}$.)

2. Find all subgroups of $(\mathbf{Z}_{9}^{*}, \cdot)$ $(\mathbf{Z}_{9}^{*}$ is the set of invertible elements in a monoid \mathbf{Z}_{9} with respect to the multiplication $[a] \cdot [b] = [ab]$.)

3. Show that (\mathbf{Z}_9^*, \cdot) is a cyclic group.

4. Find all elements of the subgroup of S_3 generated by the set $\{(1,2), (1,2,3)\}$.

5. Show that S_3 is not a cyclic group.

1. Find all subgroups of $(\mathbf{Z}_6, +)$. ([a] + [b] = [a + b] for all $a, b \in \mathbf{Z}$.)

Sol. $Z_6 = \{[0], [1], [2], [3], [4], [5]\}$. Let H be a subgroup of Z_6 . If H contains [1], then H contains [2] = [1] + [1], [3] = [2] + [1], [4] = [3] + 1, [5] = [4] + [1] and [0] = [5] + [1]. Hence $H = Z_6$. If H contains [5], then it must contain -[5] = [1]. Hence $H = Z_6$. Suppose H contains neither [1] nor [5]. If H contains either [2] or $[4], H = \langle [2] \rangle = \{[0], [2], [4]\}$ as -[2] = [4] because if H further contains [3], it contains [5] = [2] + [3], a contradiction. If H does not contain [1], [2], [4], [5], then $H = \{[0]\}$ or $H = \langle [3] \rangle = \{[0], [3]\}$. Hence the following are the subgroups of Z_6 .

- $\{[0]\}, \{[0], [3]\}, \{[0], [2], [4]\}, \text{ and } \boldsymbol{Z}_6.$
- 2. Find all subgroups of (\mathbf{Z}_9^*, \cdot) $(\mathbf{Z}_9^*$ is the set of invertible elements in a monoid \mathbf{Z}_9 with respect to the multiplication $[a] \cdot [b] = [ab]$.)

Sol. $Z_9^* = \{[1], [2], [4], [5], [7], [8]\}$. Let H be a subgroup of Z_9^* . Since $\langle [2] \rangle = \langle [5] \rangle = Z_9^*$, if H contains either [2] or [5], $H = Z_9^*$. Suppose H contains neither [2] nor [5]. Since $\langle [4] \rangle = \langle [7] \rangle = \{[1], [4], [7]\}$ and if this subgroup further contain [8], then it must contain [4][8] = [5]. Hence we can conclude that the following are the subgroups of Z_9^* .

 $\{[1]\}, \{[1], [8]\}, \{[1], [4], [7]\}, \text{ and } \boldsymbol{Z}_{9}^{*}.$

3. Show that (\mathbf{Z}_9^*, \cdot) is a cyclic group.

Sol. Since $Z_9^* = \langle [2] \rangle$, Z_9^* is a cyclic group.

Actually, Z_9^* is isomorphic to Z_6 by the following correspondence:

$$\alpha([1]) = [0], \alpha([2]) = [1], \alpha([4]) = \alpha([2]^2) = [1] + [1] = [2], \dots, \alpha([2]^m) = [m].$$

Please check that α is a bijection satisfying $\alpha(a \cdot b) = \alpha(a) + \alpha(b)$.

4. Find all elements of the subgroup of S_3 generated by the set $\{(1,2), (1,2,3)\}$.

Sol. (1,2)(1,2,3) = (2,3), (1,2,3)(1,2) = (1,3), (1,2,3)(1,2,3) = (1,3,2), and (1,2)(1,2) = id. Hence all elements of S_3 are in $\langle (1,2), (1,2,3) \rangle$.

The identity element can be recognized as a product of zero elements of the set $\{(1,2), (1,2,3)\}$. As for product, all elements are multiplied to the identity element.

5. Show that S_3 is not a cyclic group.

Sol. $(1,2)^2 = (1,3)^2 = (2,3)^2 = id$ and $(1,2,3)^3 = (1,3,2)^3 = id$. Hence there is no element of order 6.

Since cyclic groups are commutative (why?) S_3 cannot be cyclic as it is not commutative as indicated by the computation in the previous problem.

Quiz 5

Due: 10:00 a.m. May 22, 2006

Division: ID#: Name:

- 1. Let H be a subgroup of a gourp G.
 - (a) For $x, y \in G$, show that $xH = yH \Leftrightarrow x^{-1}y \in H$.

(b) For $x, y \in G$, show that $xH = yH \Leftrightarrow Hx^{-1} = Hy^{-1}$.

(c) Let G/H be the set of left cosets of H in G, and let $H \setminus G$ be the set of right cosets of H in G. Then the mapping $\phi : G/H \to H \setminus G (xH \mapsto Hx^{-1})$ is a bijection.

2. Let $G = S_3$ be the symmetric group of degree three. Let $H = \langle (1,2) \rangle$. Determine G/H and $H \setminus G$ and the correspondence between them in the previous problem.

1. Let H be a subgroup of a gourp G.

First we prove the following: (i) HH = H, (ii) $H^{-1} = H$.

Proof. Since H is a subgroup of G, $HH \subset H$ and $H^{-1} \subset H$. Since $1 \in H$, $H = H1 \subset HH$. Hence HH = H. Since $H = \{(h^{-1})^{-1} \mid h \in H\} \subset H^{-1} \subset H$, $H = H^{-1}$.

(a) For $x, y \in G$, show that $xH = yH \Leftrightarrow x^{-1}y \in H$. Sol. Suppose xH = yH. Since H is a subgroup of G, $1 \in H$. Hence

 $x^{-1}y \in x^{-1}y1 \in x^{-1}yH = x^{-1}xH = 1H = H.$

Conversely suppose $x^{-1}y \in H$. Then

$$xH = xHH \supset xx^{-1}yH = yH = yHH \supset y(x^{-1}y)^{-1}H = yy^{-1}xH = xH.$$

Hence xH = yH.

Ì

(b) For $x, y \in G$, show that $xH = yH \Leftrightarrow Hx^{-1} = Hy^{-1}$. Sol. Suppose xH = yH. Then $(xH)^{-1} = (yH)^{-1}$. So

$$Hx^{-1} = H^{-1}x^{-1} = (xH)^{-1} = (yH)^{-1} = H^{-1}y^{-1} = Hy^{-1}.$$

Conversely suppose $Hx^{-1} = Hy^{-1}$. Then

$$xH = xH^{-1} = (Hx^{-1})^{-1} = (Hy^{-1})^{-1} = yH^{-1} = yH.$$

(c) Let G/H be the set of left cosets of H in G, and let $H \setminus G$ be the set of right cosets of H in G. Then the mapping $\phi : G/H \to H \setminus G(xH \mapsto Hx^{-1})$ is a bijection.

Sol. First the mapping is defined by $xH \mapsto (xH)^{-1}$. Since $(xH)^{-1} = H^{-1}x^{-1} = Hx^{-1}$, $(xH)^{-1} \in H \setminus G$. Now ϕ is injective because $Hx^{-1} = \phi(xH) = \phi(yH) = Hy^{-1}$ implies xH = yH by the previous problem. ϕ is surjective because $\phi(x^{-1}H) = Hx$ for every $Hx \in H \setminus G$. Let P(G) denote the set of subsets of G. Then the mapping $\psi : P(G) \to P(G) (A \mapsto A^{-1})$ is a bijection as $\psi \circ \psi = id_{P(X)}$. Moreover, $\psi(G/H) \subset H \setminus G$

as $\phi(xH) = Hx^{-1}$. Since ϕ is defined by $\psi_{|G/H}$, ϕ is injective.

2. Let $G = S_3$ be the symmetric group of degree three. Let $H = \langle (1,2) \rangle$. Determine G/H and $H \setminus G$ and the correspondence between them in the previous problem.

Sol. $G = S_3 = \{1, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$ and $H = \{1, (1, 2)\}$. Since |H| = 2 and |G| = 6, |G:H| = 3. $G/H = \{H, (1, 2, 3)H, (1, 3, 2)H\}$ as $(1, 2, 3) \notin H$, $(1, 3, 2) \notin H$ and $(1, 2, 3)^{-1}(1, 3, 2) = (1, 3, 2)(1, 3, 2) = (1, 2, 3) \notin H$. Moreover, $(1, 2, 3)H = \{(1, 2, 3), (1, 3)\}$ and $(1, 3, 2)H = \{(1, 3, 2), (2, 3)\}$. Now $H(1, 2, 3)^{-1} = H(1, 3, 2) = \{(1, 3, 2), (1, 3)\}$ and $H(1, 3, 2)^{-1} = \{(1, 3, 2), (2, 3)\}$.

Therefore $H \setminus G = \{H, H(1, 3, 2), H(1, 2, 3)\}$ and $\phi(H) = H, \phi((1, 2, 3)H) = H(1, 3, 2)$ and $\phi((1, 3, 2)H) = H(1, 2, 3)$.

In this particular case, by setting $K = \langle (1,2,3) \rangle = \{1, (1,2,3), (1,3,2)\}, G = KH = HK$ and K is a left transversal and a right transversal of H in G.

Quiz 6 Division: ID#: Name:

Due: 10:00 a.m. May 31, 2006

1. Let N be a subgroup of a group G. Show the following.

 $xNx^{-1} \subseteq N$ for all $x \in G \Rightarrow xN = Nx$ for all $x \in G$.

2. Let $\sigma \in S_n$. Show that $\sigma(i_1, i_2, i_3, \ldots, i_m)\sigma^{-1} = (\sigma(i_1), \sigma(i_2), \sigma(i_3), \ldots, \sigma(i_m))$, where $(i_1, i_2, i_3, \ldots, i_m)$ is an *m*-cycle.

3. Show that if a normal subgroup N of S_n contains an m-cycle for some $2 \le m \le n$, then N contains all m-cycles.

4. Determine all normal subgroups of S_3 .

5. Determine all normal subgropus of S_4 .

1. Let N be a subgroup of a group G. Show the following.

$$xNx^{-1} \subseteq N$$
 for all $x \in G \Rightarrow xN = Nx$ for all $x \in G$.

Sol. By multiplying x from the right we have $xN \subseteq Nx$ for all $x \in G$. Since $xNx^{-1} \subseteq N$ holds for all $x \in G$, it holds for x^{-1} . Hence $x^{-1}N(x^{-1})^{-1} \subseteq N$. By multiplying x from the left we have $Nx \subseteq xN$. Since x is arbitrary, we have xN = Nx for all $x \in G$.

Let $\ell_x : G \to G \ (g \mapsto xg)$. Then ℓ_x is a bijection. Note that multiplying x from the left to the sets $x^{-1}Nx$ and N is to map these sets by ℓ_x . So $Nx = \ell_x(x^{-1}Nx) \subseteq \ell(N) = xN$, or take $x^{-1}nx \in x^{-1}Nx$ and map it by ℓ_x .

2. Let $\sigma \in S_n$. Show that $\sigma(i_1, i_2, i_3, \ldots, i_m)\sigma^{-1} = (\sigma(i_1), \sigma(i_2), \sigma(i_3), \ldots, \sigma(i_m))$, where $(i_1, i_2, i_3, \ldots, i_m)$ is an *m*-cycle.

Sol. $\sigma(i_1, i_2, i_3, \dots, i_m) \sigma^{-1}(\sigma(i_j)) = \sigma(i_1, i_2, i_3, \dots, i_m)(i_j) = \sigma(i_{i+1})$ or $\sigma(i_1)$ if j = m. If $j \notin \{i_1, i_2, \dots, i_m\}, \sigma(i_1, i_2, i_3, \dots, i_m) \sigma^{-1}(\sigma(j)) = \sigma(i_1, i_2, i_3, \dots, i_m)(j) = \sigma(j)$. Therefore $\sigma(i_1, i_2, i_3, \dots, i_m) \sigma^{-1} = (\sigma(i_1), \sigma(i_2), \sigma(i_3), \dots, \sigma(i_m))$.

3. Show that if a normal subgroup N of S_n contains an m-cycle for some $2 \le m \le n$, then N contains all m-cycles.

Sol. Suppose N contains an m-cycle (i_1, i_2, \ldots, i_m) . Let (j_1, j_2, \ldots, j_m) be an arbitrary m-cycle. Let

$$\{1, 2, \dots, n\} = \{i_1, i_2, \dots, i_m, i_{m+1}, \dots, i_n\} = \{j_1, j_2, \dots, j_m, j_{m+1}, \dots, j_n\}$$

and let $\sigma(i_s) = j_s$ for all s. Then by the previous problem, $\sigma(i_1, i_2, \dots, i_m)\sigma^{-1} = (j_1, j_2, \dots, j_m)$ and this element belongs to N. So all *m*-cycles are contained in N.

4. Determine all normal subgroups of S_3 .

Sol. Let N be a normal subgroup of S_3 . N contains 1. If N contains a transposition, i.e., a 2-cycle, then N contains all three transpositions by the previous problem. Then N contains at least four elements. Since |N| divides $|S_3| = 6$, we have $N = S_3$. Since $A_3 = \{1, (1, 2, 3), (1, 3, 2)\}$ is a normal subgroup of G, N is either 1, A_3 or S_3 .

5. Determine all normal subgropus of S_4 .

Sol. S_4 consists of the identity element, 6 transpositions, 8 three cycles, and 6 four cycles and three elements of type $(i_1, i_2)(i_3, i_4)$. Let N be a normal subgroup of G. Then |N| divides 24 and is a sum of 1 and some of 6, 8, 6, 3. The only possibilities are 1, 1 + 3, 1 + 3 + 8, 1 + 3 + 6 + 8 + 6. Thus N = 1, $V = \{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}, A_4$ or S_4 . It is easy to check that V is also a normal subgroup and it is called the Klein's Four Group. Note that in the problem 3, the case of a product of two transpositions is not dealt, but the proof includes such case.

Quiz 7 Division: ID#: Name:

- 1. Let $\alpha : G \to H$ be a group homomorphism. Let N be a normal subgroup of H, and $\alpha^{-1}(N) = \{x \in G \mid \alpha(x) \in N\}.$
 - (a) Show that $\alpha^{-1}(N)$ is a subgroup of G.
 - (b) Show that $\alpha^{-1}(N)$ is a normal subgroup of G.

2. Let H and K be groups, and $G = H \times K$. Show that $H \times K$ becomes a group by the following binary operation. For $(h_1, k_1), (h_2, k_2) \in H \times K, (h_1, k_1)(h_2, k_2) = (h_1h_2, k_1k_2)$.

- 3. Let $\alpha : \mathbf{Z} \to \mathbf{Z}_3 \times \mathbf{Z}_5$ $(n \mapsto ([n]_3, [n]_5))$, where $[n]_3$ is the equivalence class containing n modulo 3, and $[n]_5$ is the equivalence class containing n modulo 5.
 - (a) Show that α is a surjective homomorphism.
 - (b) Show that $\operatorname{Ker}(\alpha) = 15\mathbf{Z} = \{n \in \mathbf{Z} \mid 15 \mid n\}$ and that $\mathbf{Z}_3 \times \mathbf{Z}_5$ is a cyclic group.

June 7, 2006

Solutions to Quiz 7

- 1. Let $\alpha : G \to H$ be a group homomorphism. Let N be a normal subgroup of H, and $\alpha^{-1}(N) = \{x \in G \mid \alpha(x) \in N\}.$
 - (a) Show that α⁻¹(N) is a subgroup of G.
 Sol. Let K = α⁻¹(N). Since α(1_G) = 1_H ∈ N, 1_G ∈ K. Let x, y ∈ K. Then α(x), α(y) ∈ N. Since N is a subgroup of H, α(xy) = α(x)α(y) ∈ N and α(x⁻¹) = α(x)⁻¹ ∈ N. Therefore xy ∈ K and x⁻¹ ∈ K and K is a subgroup of G.

(I used the fact that if α is a homomorphism, $\alpha(xy) = \alpha(x)\alpha(t)$, $\alpha(1) = 1$ and $\alpha(x^{-1}) = \alpha(x)^{-1}$. Then (3.3.3) is applied.)

- (b) Show that $\alpha^{-1}(N)$ is a normal subgroup of G. **Sol.** Let $g \in G$ and $x \in K = \alpha^{-1}(N)$. By (4.2.1) it suffices to show that $gxg^{-1} \in K$. Since N is a normal subgroup of G, $\alpha(gxg^{-1}) = \alpha(g)\alpha(x)\alpha(g)^{-1} \in \alpha(g)N\alpha(g)^{-1} \subset N$. Hence $gxg^{-1} \in K$.
- 2. Let H and K be groups, and $G = H \times K$. Show that $H \times K$ becomes a group by the following binary operation. For $(h_1, k_1), (h_2, k_2) \in H \times K, (h_1, k_1)(h_2, k_2) = (h_1h_2, k_1k_2)$.
 - **Sol.** Let $(h_1, k_1), (h_2, k_2), (h_3, k_3) \in H \times K$. Then
 - (i) $((h_1, k_1)(h_2, k_2))(h_3, k_3) = (h_1h_2, k_1k_2)(h_3, k_3) = (h_1h_2h_3, k_1k_2k_3)$ = $(h_1, k_1)(h_2h_3, k_2k_3) = (h_1, k_1)((h_2, k_2)(h_3, k_3)).$
 - (ii) $(h_1, k_1)(1_H, 1_K) = (h_1, k_1) = (1_H, 1_K)(h_1, k_1),$
 - (iii) $(h_1, k_1)(h_1^{-1}, k_1^{-1}) = (1_H, 1_K) = (h_1^{-1}, k_1^{-1})(h_1, k_1)$. Hence $H \times K$ is a group.
- 3. Let $\alpha : \mathbb{Z} \to \mathbb{Z}_3 \times \mathbb{Z}_5$ $(n \mapsto ([n]_3, [n]_5))$, where $[n]_3$ is the equivalence class containing n modulo 3, and $[n]_5$ is the equivalence class containing n modulo 5.
 - (a) Show that α is a surjective homomorphism.

Sol. First α is a homomorphism because

$$\begin{aligned} \alpha(m+n) &= ([m+n]_3, [m+n]_5) = ([m]_3 + [n]_3, [m]_5 + [n]_5) \\ &= ([m]_3, [m]_5) + ([n]_3, [n]_5) = \alpha(m) + \alpha(n). \end{aligned}$$

We show that there is $n \in \mathbb{Z}$ such that $\alpha(n) = ([a]_3, [b]_5)$ for all $a, b \in \mathbb{Z}$. Since 3 and 5 are relatively prime, there exist $x, y \in \mathbb{Z}$ such that 3x + 5y = 1. Thus let n = 3bx + 5ay. Then

$$\begin{aligned} \alpha(n) &= ([3bx + 5ay]_3, [3bx + 5ay]_5) = ([5ay]_3, [3bx]_5) \\ &= ([a(1 - 3x)]_3, [b(1 - 5y)]_5) = ([a]_3, [b]_5). \end{aligned}$$

Therefore α is a surjective homomorphism. (See (2.3.7).)

(b) Show that $\operatorname{Ker}(\alpha) = 15\mathbb{Z} = \{n \in \mathbb{Z} \mid 15 \mid n\}$ and that $\mathbb{Z}_3 \times \mathbb{Z}_5$ is cyclic. Sol. Since $\alpha(15m) = ([15m]_3, [15m]_5) = ([0]_3, [0]_5), 15\mathbb{Z} \subseteq \operatorname{Ker}(\alpha)$. If $n \in \operatorname{Ker}(\alpha)$, then $[n]_3 = [0]_3$ and $[n]_5 = [0]_5$. Hence $3 \mid n$ and $5 \mid n$. Let $x, y \in \mathbb{Z}$ such that 3x + 5y = 1. Then n = 3xn + 5yn. Since $3 \mid n$ and $5 \mid n$, both 3xn and 5yn are divisible by 15. Hence n is divisible by 15, and $n \in 15\mathbb{Z}$. Since $\mathbb{Z}/15\mathbb{Z} \simeq \mathbb{Z}_3 \times \mathbb{Z}_5$ and $\mathbb{Z}/15\mathbb{Z}$ is cyclic, $\mathbb{Z}_3 \times \mathbb{Z}_5$ is cyclic as well.

Quiz 8Due: 10:00 a.m. June 14, 2006Division:ID#:Name:Let G be a group, H a subgroup and $\alpha : G \times G/H \to G/H$ ($(g, xH) \mapsto gxH$).1. Show that α defines a left action of G on the set G/H.

2. For $x \in G$, show that $\operatorname{St}_G(xH) = \{g \in G \mid \alpha(g, xH) = xH\}$ is a subgroup of G.

3. Show that $\operatorname{St}_G(xH) = xHx^{-1}$, where $\operatorname{St}_G(xH)$ is the subgroup defined above.

4. Suppose |G:H| = 3. Let N = Ker(G, G/H). Show that |G:N| = 3 or 6.

5. Suppose $G = S_3$ and $H = \{1, (1, 2)\}$. Determine Ker(G, G/H) in this case.

June 14, 2006

Let G be a group, H a subgroup and $\alpha: G \times G/H \to G/H$ $((g, xH) \mapsto gxH)$.

1. Show that α defines a left action of G on the set G/H.

Sol. Let $\alpha(g, xH) = g \cdot xH$. (i) $g_2 \cdot (g_1 \cdot xH) = g_2g_1xH = (g_2g_1) \cdot xH$ and (i) holds. $1_G \cdot xH = 1xH = xH$ and (ii) holds. Hence α defines a left action of G on the set G/H.

- 2. For $x \in G$, show that $\operatorname{St}_G(xH) = \{g \in G \mid \alpha(g, xH) = xH\}$ is a subgroup of G. **Sol.** Since $1_G \cdot xH = xH$, $1_G \in \operatorname{St}_G(xH)$. Let $g_1, g_2 \in \operatorname{St}_G(xH)$. Then $(g_1g_2) \cdot xH = g_1 \cdot (g_2 \cdot xH) = g_1 \cdot xH = xH$. Hence $g_1g_2 \in \operatorname{St}_G(xH)$. Since $g_1^{-1} \cdot xH = g_1^{-1} \cdot (g_1 \cdot xH) = 1_G \cdot xH = xH$, $g_1^{-1} \in \operatorname{St}_G(xH)$. Hence $\operatorname{St}_G(xH) \leq G$.
- 3. Show that $\operatorname{St}_G(xH) = xHx^{-1}$, where $\operatorname{St}_G(xH)$ is the subgroup defined above.

Sol. Let $g \in \operatorname{St}_G(xH)$. Then gxH = xH. Hence $g \in gx1x^{-1} \in gxHx^{-1} = xHx^{-1}$ and $\operatorname{St}_G(xH) \subseteq xHx^{-1}$. On the other hand if $g \in xHx^{-1}$, there exists $h \in H$ such that $g = xhx^{-1}$. Now $gxH = xhx^{-1}xH = xhH = xH$. So $xHx^{-1} \subseteq \operatorname{St}_G(xH)$. Note that aH = bH if and only if $a^{-1}b \in H$, and hence we have H = hH if and only if $h \in H$.

In particular $xHx^{-1} \leq G$.

- 4. Suppose |G: H| = 3. Let N = Ker(G, G/H). Show that |G: N| = 3 or 6.
 Sol. Since |G/H| = 3, there is a homomorphism â : G → Sym(G/H) ≃ S₃. Hence by the isomorphism theorem, G/N is isomorphic to a subgroup of S₃. Since N ≤ H, |G: N| = |G: H||H: N| = 3|H: N|. Thus we have the result.
 We used the fact that |S₃| = 6 and N = ∩_{x∈G} xHx⁻¹ ⊆ H.
- 5. Suppose $G = S_3$ and $H = \{1, (1, 2)\}$. Determine Ker(G, G/H) in this case. **Sol.** Since $(1, 3)H(1, 3) \neq H, N < H$. Hence |G : N| = 6, and N = Ker(G, G/H) = 1.