
Quiz 1 Due: 10:00 a.m. April 19, 2006

Division: ID#: Name:

Let m be a positive integer. Let [a] = {a + mq | q ∈ Z} denote the congruence class
modulo m containing a, and Zm = {[a] | a ∈ Z}.

1. Show that the sum defined by [a] + [b] = [a + b] is well-defined, i.e., if [a] = [a′] and
[b] = [b′] for a, a′, b, b′ ∈ Z, then [a + b] = [a′ + b′].

2. Show that the product defined by [a] · [b] = [a · b] is well-defined, i.e., if [a] = [a′] and
[b] = [b′] for a, a′, b, b′ ∈ Z, then [a · b] = [a′ · b′].

3. Let m = 14. Find all elements [a] ∈ Z14 such that there exists x ∈ Z14 satisfying
[a][x] = [1].

4. Let [a]6 = [a][a][a][a][a][a] in Z14. Show that if gcd{a, 14} = 1, then [a]6 = [1].

5. Let a be an integer such that gcd{a, 14} = 1. Show that 14 | (a6 − 1).

Message: What do you expect from this course? Any requests?



Solutions to Quiz 1 April 15, 2006

Division: ID#: Name:

Let m be a positive integer. Let [a] = {a + mq | q ∈ Z} denote the congruence class
modulo m containing a, and Zm = {[a] | a ∈ Z}.

1. Show that the sum defined by [a] + [b] = [a + b] is well-defined, i.e., if [a] = [a′] and
[b] = [b′] for a, a′, b, b′ ∈ Z, then [a + b] = [a′ + b′].

Sol. Observe that [c] = [c′] if and only if m | (c−c′). (See p.24.) So if [a] = [a′] and
[b] = [b′], m | (a−a′) and m | (b−b′). Thus m | (a−a′)+(b−b′) = (a+b)− (a′+b′).
Thus [a + b] = [a′ + b′].

In mathematics the term “well-defined” is often used. In this particular case, well-
definedness stands for [a]+ [b] = [a+b] actually defines a binary operation, that is if
[a] and [b] are given [a+b] is uniquely determined regardless of expressions of [a] and
[b]. Note that there are many expressions of elements [a] and [b] as [a] = [a+mp] and
[b] = [b + mq] for any integers p and q. What we showed above is that regardless of
the expressions [a+b] or [a+mp+b+mq] gives the same member in Zm. Therefore
we can carry out computations in Zm freely using this definition.

2. Show that the product defined by [a] · [b] = [a · b] is well-defined, i.e., if [a] = [a′] and
[b] = [b′] for a, a′, b, b′ ∈ Z, then [a · b] = [a′ · b′].
Sol. Suppose [a] = [a′] and [b] = [b′]. Then m | (a−a′) and m | (b− b′). Therefore

m | (a − a′)b + a′(b − b′) = ab − a′b + a′b − a′b′ = ab − a′b′.

Thus [ab] = [a′b′].

3. Let m = 14. Find all elements [a] ∈ Z14 such that there exists x ∈ Z14 satisfying
[a][x] = [1].

Sol. Let d = gcd{a, 14}. If [1] = [a][x] = [ax] then there exists q ∈ Z such that
ax = 1+14q. Since d | (ax−14q) = 1, d = 1. Hence [x] ∈ {[1], [3], [5], [9], [11], [13]}.
Observe that

[1][1] = [1], [3][5] = [5][3] = [1], [9][11] = [−3][−5] = [1], [13][13] = [−1][−1] = [1].

Hence all elements in the set U = {[1], [3], [5], [9], [11], [13]} have the property.

See (2.3.5) and (2.3.6). U is often written as Z∗
14. (See p.41.)

4. Let [a]6 = [a][a][a][a][a][a] in Z14. Show that if gcd{a, 14} = 1, then [a]6 = [1].

Sol. [3]2 = [3][3] = [9], [3]3 = [9][3] = [−5][3] = [−15] = [−1] = [13], [3]4 =
[−1][3] = [−3] = [11], [3]5 = [−3][3] = [−9] = [5], [3]6 = [1]. Since every element of
U above is written as a power of [3], say [a] = [3]i, [a]6 = ([3]i)6 = ([3]6)i = [1].

We can also use (2.3.4). Since 7 is a prime, we have 7 | (a7 − a) = a(a6 − 1). Since
a is relatively prime to 14, it is relatively prime to 7. Hence by (2.2.5) 7 | (a6 − 1).
Since a is odd and a6 − 1 is even, 14 | (a6 − 1). This implies [a]6 = [1].

5. Let a be an integer such that gcd{a, 14} = 1. Show that 14 | (a6 − 1).

Sol. Since [1] = [a]6 = [a6]. 14 | (a6 − 1).



Quiz 2 Due: 10:00 a.m. April 26, 2006

Division: ID#: Name:

Let π =

(
1 2 3 4 5 6 7 8
4 3 1 5 6 2 7 8

)
, σ =

(
1 2 3 4 5 6 7 8
8 4 5 7 2 1 3 6

)
.

1. Compute πσπ−1.

2. Express each of σ and πσπ−1 as a product of disjoint cycles.

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)).

4. Express each of π and σ as a product of adjacent transpositions (1, 2), (2, 3), . . . , (7, 8).

5. Determine sign(π) and sign(σ).

Message: Any questions, comments or requests?



Solutions to Quiz 2 April 26, 2006

Let π =

(
1 2 3 4 5 6 7 8
4 3 1 5 6 2 7 8

)
, σ =

(
1 2 3 4 5 6 7 8
8 4 5 7 2 1 3 6

)
.

1. Compute πσπ−1.

Sol.

πσπ−1

=

(
1 2 3 4 5 6 7 8
4 3 1 5 6 2 7 8

)(
1 2 3 4 5 6 7 8
8 4 5 7 2 1 3 6

)(
4 3 1 5 6 2 7 8
1 2 3 4 5 6 7 8

)

=

(
1 2 3 4 5 6 7 8
6 4 5 8 7 3 1 2

)

2. Express each of σ and πσπ−1 as a product of disjoint cycles.

Sol.

σ = (1, 8, 6)(2, 4, 7, 3, 5),

πσπ−1 = (2, 4, 8)(1, 6, 3, 5, 7)

( = (4, 8, 2)(3, 5, 7, 1, 6) = (π(1), π(8), π(6))(π(2), π(4), π(7), π(3), π(5)).)

3. Express each of π and σ as a product of transpositions (2-cycles (i, j)).

Sol.

π = (1, 3)(1, 2)(1, 6)(1, 5)(1, 4) (= (1, 4)(4, 5)(5, 6)(6, 2)(2, 3))

σ = (1, 6)(1, 8)(2, 5)(2, 3)(2, 7)(2, 4) (= (1, 8)(8, 6)(2, 4)(4, 7)(7, 3)(3, 5))

Use the formula in Corollary 3.1.4.

4. Express each of π and σ as a product of adjacent transpositions (1, 2), (2, 3), . . . , (7, 8).

Sol.

π = (2, 3)(1, 2)(2, 3)(1, 2)(5, 6)(4, 5)(3, 4)(2, 3)(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(4, 5)(3, 4)

(2, 3)(1, 2)(2, 3)(3, 4)(4, 5)(3, 4)(2, 3)(1, 2)(2, 3)(3, 4)

= (3.4)(2, 3)(3, 4)(4, 5)(5, 6)(1, 2)(2, 3) Shortest!

σ = (7, 8)(6, 7)((5, 6)(4, 5)(3, 4)(2, 3)(1, 2)(7, 8)(4, 5)(3, 4)(2, 3)(5, 6)(4, 5)(3, 4)

(6, 7)(5, 6)(4, 5)(5, 6) Shortest!

For the expressions use the formula in Exercise 3.1.4 or consider Amida-Kuji. The
minimal number of adjacent transpositions required to express each permutation
equals the number ℓ of the permutation to be calculated in the next problem. Can
you prove this fact?

5. Determine sign(π) and sign(σ).

Sol. Since ℓ(π) = 7, sign(π) = (−1)7 = −1. Similarly since ℓ(σ) = (−1)18,
sign(π) = (−1)18 = 1. Since π is the product of 3 cycles, sign(π) = (−1)8−3 = −1
by Cauchy’s Formula in (3.1.9). Similarly σ is the product of 2 cycles, sign(σ) =
(−1)8−2 = 1.



Quiz 3 Due: 10:00 a.m. May 8, 2006

Division: ID#: Name:

1. Let S be the subset of Z14 = {[a] | a ∈ Z} = {[0], [1], . . . , [13]} ([a] = [a]14 =
{a + 14q | q ∈ Z}) specified below and define [a] · [b] = [a · b]. Say in each case
whether (S, ·) is a semigroup, a monoid, a group, or none of these.

(a) S = {[1], [3], [5], [7], [9], [11], [13]};

(b) S = {[1], [3], [5], [9], [11], [13]};

(c) S = {[2], [4], [8]};

(d) S = {[0], [2], [4], [6], [8], [10], [12]}.

2. Let (M, ◦) be a semigroup with the following two conditions: (i) There exists an
element e such that for every x ∈ M , x ◦ e = x. (ii) For each element x ∈ M there
exists x′ ∈ M such that x ◦ x′ = e.

(a) Show that e is an identity element, i.e., x ◦ e = x = e ◦ x for every x ∈ M .
(Hint: Let x′, x′′ ∈ M such that x ◦ x′ = e = x′ ◦ x′′, which are guaranteed to
exist by (ii). Compute x ◦ x′ ◦ x ◦ x′ ◦ x′′ in two ways to show e ◦ x = x.)

(b) Show that (M, ◦) is a group.

3. Define a binary operation ∗ on a set S = {a, b} so that (S, ∗) is a semigroup satisfying
the following conditions (i) and (ii’) but not a monoid: (i) There exists an element
e such that for every x ∈ S, x ∗ e = x. (ii’) For each element x ∈ S there exists
x′ ∈ S such that x′ ∗ x = e.

Message: Any requests or questions?



Solutions to Quiz 3 April 29, 2006

1. Let S be the subset of Z14 = {[a] | a ∈ Z} = {[0], [1], . . . , [13]} ([a] = [a]14 =
{a + 14q | q ∈ Z}) specified below and define [a] · [b] = [a · b]. Say in each case
whether (S, ·) is a semigroup, a monoid, a group, or none of these.

Since all of these subsets are closed under multiplication and (Z14, ·) is a semigroup
(and a monoid with [1] as its inverse), these are either a semigroup, a monoid or a
group.

(a) S = {[1], [3], [5], [7], [9], [11], [13]};
Sol. A monoid with [1] as its identity element. [7] does not have its inverse.

(b) S = {[1], [3], [5], [9], [11], [13]};
Sol. A group with [1] as its identity element, and [1]−1 = [1], [3]−1 = [5], [5]−1 =
[3], [9]−1 = [11], [11]−1 = [9], [13]−1 = [13]. This group is denoted by Z∗

14. See
p.41 (iv).

(c) S = {[2], [4], [8]};
Sol. A group with [8] as its identity element.

(d) S = {[0], [2], [4], [6], [8], [10], [12]}.
Sol. A semigroup.

2. Let (M, ◦) be a semigroup with the following two conditions: (i) There exists an
element e such that for every x ∈ M , x ◦ e = x. (ii) For each element x ∈ M there
exists x′ ∈ M such that x ◦ x′ = e.

(a) Show that e is an identity element, i.e., x ◦ e = x = e ◦ x for every x ∈ M .
(Hint: Let x′, x′′ ∈ M such that x ◦ x′ = e = x′ ◦ x′′, which are guaranteed to
exist by (ii). Compute x ◦ x′ ◦ x ◦ x′ ◦ x′′ in two ways to show e ◦ x = x.)

Sol. It suffices to show that e ◦ x = x for every x ∈ M . Let x ∈ M . Then
by the condition (ii), there exists x′ ∈ M such that x ◦ x′ = e. Since x′ ∈ M ,
there exists x′′ ∈ M such that x′ ◦ x′′ = e by (ii). Now we have e ◦ x = x by
the following.

e ◦ x = (e ◦ x) ◦ e = ((x ◦ x′) ◦ x) ◦ (x′ ◦ x′′) = x ◦ ((x′ ◦ (x ◦ x′)) ◦ x′′)

= x ◦ ((x′ ◦ e) ◦ x′′) = x ◦ (x′ ◦ x′′) = x′ ◦ e = x.

(b) Show that (M, ◦) is a group.

Sol. It is enough to show that x = x′′ if x ◦ x′ = e = x′ ◦ x′′. First by (a),
e ◦ x′′ = x′′. Hence x′′ = e ◦ x′′ = x ◦ x′ ◦ x′′ = x ◦ e = x.

3. Define a binary operation ∗ on a set S = {a, b} so that (S, ∗) is a semigroup satisfying
the following conditions (i) and (ii’) but not a monoid: (i) There exists an element
e such that for every x ∈ S, x ∗ e = x. (ii’) For each element x ∈ S there exists
x′ ∈ S such that x′ ∗ x = e.

Sol. Let a = e and e ∗ e = e, b ∗ e = b, e ∗ b = e and b ∗ b = b. Then this operation
gives the left most element in the product. Hence (S, ∗) is a semigroup, and satisfies
both (i) and (ii’), but neither e = a nor b is an identity element.



Quiz 4 Due: 10:00 a.m. May 15, 2006

Division: ID#: Name:

1. Find all subgroups of (Z6, +). ([a] + [b] = [a + b] for all a, b ∈ Z.)

2. Find all subgroups of (Z∗
9, ·) (Z∗

9 is the set of invertible elements in a monoid Z9

with respect to the multiplication [a] · [b] = [ab].)

3. Show that (Z∗
9, ·) is a cyclic group.

4. Find all elements of the subgroup of S3 generated by the set {(1, 2), (1, 2, 3)}.

5. Show that S3 is not a cyclic group.

Message: Any questions or requests?



Solutions to Quiz 4 May 8, 2006

1. Find all subgroups of (Z6, +). ([a] + [b] = [a + b] for all a, b ∈ Z.)

Sol. Z6 = {[0], [1], [2], [3], [4], [5]}. Let H be a subgroup of Z6. If H contains [1],
then H contains [2] = [1] + [1], [3] = [2] + [1], [4] = [3] + 1, [5] = [4] + [1] and
[0] = [5] + [1]. Hence H = Z6. If H contains [5], then it must contain −[5] = [1].
Hence H = Z6. Suppose H contains neither [1] nor [5]. If H contains either [2]
or [4], H = 〈[2]〉 = {[0], [2], [4]} as −[2] = [4] because if H further contains [3], it
contains [5] = [2] + [3], a contradiction. If H does not contain [1], [2], [4], [5], then
H = {[0]} or H = 〈[3]〉 = {[0], [3]}. Hence the following are the subgroups of Z6.

{[0]}, {[0], [3]}, {[0], [2], [4]}, and Z6.

2. Find all subgroups of (Z∗
9, ·) (Z∗

9 is the set of invertible elements in a monoid Z9

with respect to the multiplication [a] · [b] = [ab].)

Sol. Z∗
9 = {[1], [2], [4], [5], [7], [8]}. Let H be a subgroup of Z∗

9. Since 〈[2]〉 =
〈[5]〉 = Z∗

9, if H contains either [2] or [5], H = Z∗
9. Suppose H contains neither [2]

nor [5]. Since 〈[4]〉 = 〈[7]〉 = {[1], [4], [7]} and if this subgroup further contain [8],
then it must contain [4][8] = [5]. Hence we can conclude that the following are the
subgroups of Z∗

9.
{[1]}, {[1], [8]}, {[1], [4], [7]}, and Z∗

9.

3. Show that (Z∗
9, ·) is a cyclic group.

Sol. Since Z∗
9 = 〈[2]〉, Z∗

9 is a cyclic group.

Actually, Z∗
9 is isomorphic to Z6 by the following correspondence:

α([1]) = [0], α([2]) = [1], α([4]) = α([2]2) = [1] + [1] = [2], . . . , α([2]m) = [m].

Please check that α is a bijection satisfying α(a · b) = α(a) + α(b).

4. Find all elements of the subgroup of S3 generated by the set {(1, 2), (1, 2, 3)}.
Sol. (1, 2)(1, 2, 3) = (2, 3), (1, 2, 3)(1, 2) = (1, 3), (1, 2, 3)(1, 2, 3) = (1, 3, 2), and
(1, 2)(1, 2) = id. Hence all elements of S3 are in 〈(1, 2), (1, 2, 3)〉.
The identity element can be recognized as a product of zero elements of the set
{(1, 2), (1, 2, 3)}. As for product, all elements are multiplied to the identity element.

5. Show that S3 is not a cyclic group.

Sol. (1, 2)2 = (1, 3)2 = (2, 3)2 = id and (1, 2, 3)3 = (1, 3, 2)3 = id. Hence there is
no element of order 6.

Since cyclic groups are commutative (why?) S3 cannot be cyclic as it is not com-
mutative as indicated by the computation in the previous problem.



Quiz 5 Due: 10:00 a.m. May 22, 2006

Division: ID#: Name:

1. Let H be a subgroup of a gourp G.

(a) For x, y ∈ G, show that xH = yH ⇔ x−1y ∈ H.

(b) For x, y ∈ G, show that xH = yH ⇔ Hx−1 = Hy−1.

(c) Let G/H be the set of left cosets of H in G, and let H\G be the set of right
cosets of H in G. Then the mapping φ : G/H → H\G (xH 7→ Hx−1) is a
bijection.

2. Let G = S3 be the symmetric group of degree three. Let H = 〈(1, 2)〉. Determine
G/H and H\G and the correspondence between them in the previous problem.

Message: Any questions or requests?



Solutions to Quiz 5 May 22, 2006

1. Let H be a subgroup of a gourp G.

First we prove the following: (i) HH = H, (ii) H−1 = H.

Proof. Since H is a subgroup of G, HH ⊂ H and H−1 ⊂ H. Since 1 ∈ H,
H = H1 ⊂ HH. Hence HH = H. Since H = {(h−1)−1 | h ∈ H} ⊂ H−1 ⊂ H,
H = H−1.

(a) For x, y ∈ G, show that xH = yH ⇔ x−1y ∈ H.

Sol. Suppose xH = yH. Since H is a subgroup of G, 1 ∈ H. Hence

x−1y ∈ x−1y1 ∈ x−1yH = x−1xH = 1H = H.

Conversely suppose x−1y ∈ H. Then

xH = xHH ⊃ xx−1yH = yH = yHH ⊃ y(x−1y)−1H = yy−1xH = xH.

Hence xH = yH.

(b) For x, y ∈ G, show that xH = yH ⇔ Hx−1 = Hy−1.

Sol. Suppose xH = yH. Then (xH)−1 = (yH)−1. So

Hx−1 = H−1x−1 = (xH)−1 = (yH)−1 = H−1y−1 = Hy−1.

Conversely suppose Hx−1 = Hy−1. Then

xH = xH−1 = (Hx−1)−1 = (Hy−1)−1 = yH−1 = yH.

(c) Let G/H be the set of left cosets of H in G, and let H\G be the set of right
cosets of H in G. Then the mapping φ : G/H → H\G (xH 7→ Hx−1) is a
bijection.

Sol. First the mapping is defined by xH 7→ (xH)−1. Since (xH)−1 =
H−1x−1 = Hx−1, (xH)−1 ∈ H\G. Now φ is injective because Hx−1 =
φ(xH) = φ(yH) = Hy−1 implies xH = yH by the previous problem. φ is
surjective because φ(x−1H) = Hx for every Hx ∈ H\G.

Let P (G) denote the set of subsets of G. Then the mapping ψ : P (G) →
P (G) (A 7→ A−1) is a bijection as ψ ◦ ψ = idP (X). Moreover, ψ(G/H) ⊂ H\G
as φ(xH) = Hx−1. Since φ is defined by ψ|G/H , φ is injective.

2. Let G = S3 be the symmetric group of degree three. Let H = 〈(1, 2)〉. Determine
G/H and H\G and the correspondence between them in the previous problem.

Sol. G = S3 = {1, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} and H = {1, (1, 2)}. Since
|H| = 2 and |G| = 6, |G : H| = 3. G/H = {H, (1, 2, 3)H, (1, 3, 2)H} as (1, 2, 3) ̸∈ H,
(1, 3, 2) ̸∈ H and (1, 2, 3)−1(1, 3, 2) = (1, 3, 2)(1, 3, 2) = (1, 2, 3) ̸∈ H. Moreover,
(1, 2, 3)H = {(1, 2, 3), (1, 3)} and (1, 3, 2)H = {(1, 3, 2), (2, 3)}. Now H(1, 2, 3)−1 =
H(1, 3, 2) = {(1, 3, 2), (1, 3)} and H(1, 3, 2)−1 = {(1, 3, 2), (2, 3)}.
Therefore H\G = {H,H(1, 3, 2), H(1, 2, 3)} and φ(H) = H, φ((1, 2, 3)H) = H(1, 3, 2)
and φ((1, 3, 2)H) = H(1, 2, 3).

In this particular case, by setting K = 〈(1, 2, 3)〉 = {1, (1, 2, 3), (1, 3, 2)}, G = KH =
HK and K is a left transversal and a right transversal of H in G.



Quiz 6 Due: 10:00 a.m. May 31, 2006

Division: ID#: Name:

1. Let N be a subgroup of a group G. Show the following.

xNx−1 ⊆ N for all x ∈ G ⇒ xN = Nx for all x ∈ G.

2. Let σ ∈ Sn. Show that σ(i1, i2, i3, . . . , im)σ−1 = (σ(i1), σ(i2), σ(i3), . . . , σ(im)),
where (i1, i2, i3, . . . , im) is an m-cycle.

3. Show that if a normal subgroup N of Sn contains an m-cycle for some 2 ≤ m ≤ n,
then N contains all m-cycles.

4. Determine all normal subgroups of S3.

5. Determine all normal subgropus of S4.

Message: Any questions or requests?



Solutions to Quiz 6 May 31, 2006

1. Let N be a subgroup of a group G. Show the following.

xNx−1 ⊆ N for all x ∈ G ⇒ xN = Nx for all x ∈ G.

Sol. By multiplying x from the right we have xN ⊆ Nx for all x ∈ G. Since
xNx−1 ⊆ N holds for all x ∈ G, it holds for x−1. Hence x−1N(x−1)−1 ⊆ N .
By multiplying x from the left we have Nx ⊆ xN . Since x is arbitrary, we have
xN = Nx for all x ∈ G.

Let ℓx : G → G (g 7→ xg). Then ℓx is a bijection. Note that multiplying x from the
left to the sets x−1Nx and N is to map these sets by ℓx. So Nx = ℓx(x

−1Nx) ⊆
ℓ(N) = xN , or take x−1nx ∈ x−1Nx and map it by ℓx.

2. Let σ ∈ Sn. Show that σ(i1, i2, i3, . . . , im)σ−1 = (σ(i1), σ(i2), σ(i3), . . . , σ(im)),
where (i1, i2, i3, . . . , im) is an m-cycle.

Sol. σ(i1, i2, i3, . . . , im)σ−1(σ(ij)) = σ(i1, i2, i3, . . . , im)(ij) = σ(ii+1) or σ(i1) if
j = m. If j ̸∈ {i1, i2, . . . , im}, σ(i1, i2, i3, . . . , im)σ−1(σ(j)) = σ(i1, i2, i3, . . . , im)(j) =
σ(j). Therefore σ(i1, i2, i3, . . . , im)σ−1 = (σ(i1), σ(i2), σ(i3), . . . , σ(im)).

3. Show that if a normal subgroup N of Sn contains an m-cycle for some 2 ≤ m ≤ n,
then N contains all m-cycles.

Sol. Suppose N contains an m-cycle (i1, i2, . . . , im). Let (j1, j2, . . . , jm) be an
arbitrary m-cycle. Let

{1, 2, . . . , n} = {i1, i2, . . . , im, im+1, . . . , in} = {j1, j2, . . . , jm, jm+1, . . . , jn}

and let σ(is) = js for all s. Then by the previous problem, σ(i1, i2, . . . , im)σ−1 =
(j1, j2, . . . , jm) and this element belongs to N . So all m-cycles are contained in N .

4. Determine all normal subgroups of S3.

Sol. Let N be a normal subgroup of S3. N contains 1. If N contains a trans-
position, i.e., a 2-cycle, then N contains all three transpositions by the previous
problem. Then N contains at least four elements. Since |N | divides |S3| = 6, we
have N = S3. Since A3 = {1, (1, 2, 3), (1, 3, 2)} is a normal subgroup of G, N is
either 1, A3 or S3.

5. Determine all normal subgropus of S4.

Sol. S4 consists of the identity element, 6 transpositions, 8 three cycles, and 6
four cycles and three elements of type (i1, i2)(i3, i4). Let N be a normal sub-
group of G. Then |N | divides 24 and is a sum of 1 and some of 6, 8, 6, 3. The
only possibilities are 1, 1 + 3, 1 + 3 + 8, 1 + 3 + 6 + 8 + 6. Thus N = 1,
V = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}, A4 or S4. It is easy to check that V
is also a normal subgroup and it is called the Klein’s Four Group. Note that in the
problem 3, the case of a product of two transpositions is not dealt, but the proof
includes such case.



Quiz 7 Due: 10:00 a.m. June 7, 2006

Division: ID#: Name:

1. Let α : G → H be a group homomorphism. Let N be a normal subgroup of H, and
α−1(N) = {x ∈ G | α(x) ∈ N}.

(a) Show that α−1(N) is a subgroup of G.

(b) Show that α−1(N) is a normal subgroup of G.

2. Let H and K be groups, and G = H × K. Show that H × K becomes a group
by the following binary operation. For (h1, k1), (h2, k2) ∈ H × K, (h1, k1)(h2, k2) =
(h1h2, k1k2).

3. Let α : Z → Z3 × Z5 (n 7→ ([n]3, [n]5)), where [n]3 is the equivalence class
containing n modulo 3, and [n]5 is the equivalence class containing n modulo 5.

(a) Show that α is a surjective homomorphism.

(b) Show that Ker(α) = 15Z = {n ∈ Z | 15 | n} and that Z3 × Z5 is a cyclic
group.

Message: Any questions or requests?



Solutions to Quiz 7 June 7, 2006

1. Let α : G → H be a group homomorphism. Let N be a normal subgroup of H, and
α−1(N) = {x ∈ G | α(x) ∈ N}.

(a) Show that α−1(N) is a subgroup of G.

Sol. Let K = α−1(N). Since α(1G) = 1H ∈ N , 1G ∈ K. Let x, y ∈ K. Then
α(x), α(y) ∈ N . Since N is a subgroup of H, α(xy) = α(x)α(y) ∈ N and
α(x−1) = α(x)−1 ∈ N . Therefore xy ∈ K and x−1 ∈ K and K is a subgroup
of G.

(I used the fact that if α is a homomorphism, α(xy) = α(x)α(t), α(1) = 1 and
α(x−1) = α(x)−1. Then (3.3.3) is applied.)

(b) Show that α−1(N) is a normal subgroup of G.

Sol. Let g ∈ G and x ∈ K = α−1(N). By (4.2.1) it suffices to show that
gxg−1 ∈ K. Since N is a normal subgroup of G, α(gxg−1) = α(g)α(x)α(g)−1 ∈
α(g)Nα(g)−1 ⊂ N . Hence gxg−1 ∈ K.

2. Let H and K be groups, and G = H × K. Show that H × K becomes a group
by the following binary operation. For (h1, k1), (h2, k2) ∈ H × K, (h1, k1)(h2, k2) =
(h1h2, k1k2).

Sol. Let (h1, k1), (h2, k2), (h3, k3) ∈ H × K. Then

(i) ((h1, k1)(h2, k2))(h3, k3) = (h1h2, k1k2)(h3, k3) = (h1h2h3, k1k2k3)
= (h1, k1)(h2h3, k2k3) = (h1, k1)((h2, k2)(h3, k3)).

(ii) (h1, k1)(1H , 1K) = (h1, k1) = (1H , 1K)(h1, k1),

(iii) (h1, k1)(h
−1
1 , k−1

1 ) = (1H , 1K) = (h−1
1 , k−1

1 )(h1, k1). Hence H × K is a group.

3. Let α : Z → Z3 × Z5 (n 7→ ([n]3, [n]5)), where [n]3 is the equivalence class
containing n modulo 3, and [n]5 is the equivalence class containing n modulo 5.

(a) Show that α is a surjective homomorphism.

Sol. First α is a homomorphism because

α(m + n) = ([m + n]3, [m + n]5) = ([m]3 + [n]3, [m]5 + [n]5)

= ([m]3, [m]5) + ([n]3, [n]5) = α(m) + α(n).

We show that there is n ∈ Z such that α(n) = ([a]3, [b]5) for all a, b ∈ Z. Since
3 and 5 are relatively prime, there exist x, y ∈ Z such that 3x + 5y = 1. Thus
let n = 3bx + 5ay. Then

α(n) = ([3bx + 5ay]3, [3bx + 5ay]5) = ([5ay]3, [3bx]5)

= ([a(1 − 3x)]3, [b(1 − 5y)]5) = ([a]3, [b]5).

Therefore α is a surjective homomorphism. (See (2.3.7).)

(b) Show that Ker(α) = 15Z = {n ∈ Z | 15 | n} and that Z3 × Z5 is cyclic.

Sol. Since α(15m) = ([15m]3, [15m]5) = ([0]3, [0]5), 15Z ⊆ Ker(α). If n ∈
Ker(α), then [n]3 = [0]3 and [n]5 = [0]5. Hence 3 | n and 5 | n. Let x, y ∈ Z
such that 3x + 5y = 1. Then n = 3xn + 5yn. Since 3 | n and 5 | n, both 3xn
and 5yn are divisible by 15. Hence n is divisible by 15, and n ∈ 15Z. Since
Z/15Z ≅ Z3 × Z5 and Z/15Z is cyclic, Z3 × Z5 is cyclic as well.



Quiz 8 Due: 10:00 a.m. June 14, 2006

Division: ID#: Name:

Let G be a group, H a subgroup and α : G × G/H → G/H ((g, xH) 7→ gxH).

1. Show that α defines a left action of G on the set G/H.

2. For x ∈ G, show that StG(xH) = {g ∈ G | α(g, xH) = xH} is a subgroup of G.

3. Show that StG(xH) = xHx−1, where StG(xH) is the subgroup defined above.

4. Suppose |G : H| = 3. Let N = Ker(G,G/H). Show that |G : N | = 3 or 6.

5. Suppose G = S3 and H = {1, (1, 2)}. Determine Ker(G,G/H) in this case.

Message: Any questions or requests?
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Let G be a group, H a subgroup and α : G × G/H → G/H ((g, xH) 7→ gxH).

1. Show that α defines a left action of G on the set G/H.

Sol. Let α(g, xH) = g ·xH. (i) g2 · (g1 ·xH) = g2g1xH = (g2g1) ·xH and (i) holds.
1G · xH = 1xH = xH and (ii) holds. Hence α defines a left action of G on the set
G/H.

2. For x ∈ G, show that StG(xH) = {g ∈ G | α(g, xH) = xH} is a subgroup of G.

Sol. Since 1G·xH = xH, 1G ∈ StG(xH). Let g1, g2 ∈ StG(xH). Then (g1g2)·xH =
g1·(g2·xH) = g1·xH = xH. Hence g1g2 ∈ StG(xH). Since g−1

1 ·xH = g−1
1 ·(g1·xH) =

1G · xH = xH, g−1
1 ∈ StG(xH). Hence StG(xH) ≤ G.

3. Show that StG(xH) = xHx−1, where StG(xH) is the subgroup defined above.

Sol. Let g ∈ StG(xH). Then gxH = xH. Hence g ∈ gx1x−1 ∈ gxHx−1 = xHx−1

and StG(xH) ⊆ xHx−1. On the other hand if g ∈ xHx−1, there exists h ∈ H such
that g = xhx−1. Now gxH = xhx−1xH = xhH = xH. So xHx−1 ⊆ StG(xH).
Note that aH = bH if and only if a−1b ∈ H, and hence we have H = hH if and
only if h ∈ H.

In particular xHx−1 ≤ G.

4. Suppose |G : H| = 3. Let N = Ker(G,G/H). Show that |G : N | = 3 or 6.

Sol. Since |G/H| = 3, there is a homomorphism α̂ : G → Sym(G/H) ≅ S3.
Hence by the isomorphism theorem, G/N is isomorphic to a subgroup of S3. Since
N ≤ H, |G : N | = |G : H||H : N | = 3|H : N |. Thus we have the result.

We used the fact that |S3| = 6 and N =
∩

x∈G xHx−1 ⊆ H.

5. Suppose G = S3 and H = {1, (1, 2)}. Determine Ker(G,G/H) in this case.

Sol. Since (1, 3)H(1, 3) ̸= H, N < H. Hence |G : N | = 6, and N = Ker(G, G/H) =
1.


