Quiz 1

Division:

1. In \boldsymbol{Z}_{24} find the inverses of [7] and [13].
2. Show that if n is an odd integer, then $n^{2} \equiv 1 \quad(\bmod 8)$.
3. Find the general solution of the congruence $6 x \equiv 11(\bmod 5)$.

Message: What do you expect from this course? Any requests?

Quiz 2

$$
\text { Let } \pi=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 5 & 8 & 3 & 2 & 7 & 6 & 4
\end{array}\right), \sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 6 & 5 & 2 & 1 & 7 & 3 & 4
\end{array}\right) \text {. }
$$

1. Compute π^{-1}.
2. Compute $\pi \sigma$.
3. Compute $\pi \sigma \pi^{-1}$.
4. Express each of π and σ as a product of disjoint cycles.
5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Quiz 3

ID\#:

Name:

1. Let S be the subset of $\boldsymbol{R} \times \boldsymbol{R}$ specified below and define $(x, y) *\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$. Say in each case whether $(S, *)$ is a semigroup, a monoid, a group, or none of these.
(a) $S=\{(x, y) \mid x+y \geq 0\} ;$
(b) $S=\{(x, y) \mid x+y>0\} ;$
(c) $S=\{(x, y)| | x+y \mid \geq 1\} ;$
(d) $S=\{(x, y) \mid 2 x+3 y=0\}$.
2. Let (M, \circ) be a monoid with an identity element e, i.e., for every $x \in M, x \circ e=$ $x=e \circ x$.
(a) Show that if $a, b, c \in M$ satisfy $a \circ b=e=b \circ c$, then $a=c$.
(b) Suppose $a, b, c \in M$ satisfy $a \circ b=e=b \circ c$ as above. Then $a \circ x=a \circ y$ for $x, y \in M$ implies $x=y$.
(c) Suppose for every $x \in M$ there is an element $y \in M$ such that $x \circ y=e$. Then (M, \circ) is a group.

Quiz 4

Division:
ID\#:
Name:
In each case say whether or not S is a subgroup of the group G :

1. $G=G L_{n}(\boldsymbol{R}), S=\{A \in G \mid \operatorname{det}(A)=1\}$.
2. $G=(\boldsymbol{R},+), S=\{x \in \boldsymbol{R}| | x \mid \leq 1\}$.
3. $G=\boldsymbol{R} \times \boldsymbol{R}, S=\{(x, y) \mid 3 x-2 y=1\}$: here the group operation adds the components of ordered pairs.
4. $G=\left(\boldsymbol{Z}_{6},+\right), S=\{[0],[1],[5]\}$: here the usual addition of congruence classes is used.
5. $G=\left(\boldsymbol{Z}_{11}^{*}, \cdot\right), S=\{[1],[7]\}$: here \boldsymbol{Z}_{11}^{*} is the set of invertible congruence classes $[a]$ modulo 11, i.e., such that $\operatorname{gcd}\{a, 11\}=1$, and multiplication of congruence classes is used.

Quiz 5

Division:
ID\#:
Name:

1. Let H be a subgroup of a gourp G.
(a) For $x \in G$, let $\ell_{x}: G \rightarrow G$, $(y \mapsto x y)$. Show that ℓ_{x} is a bijection.
(b) For $x, y \in G$, show that

$$
x H=y H \Leftrightarrow x^{-1} y \in H .
$$

(c) For $x, y \in G$, show that

$$
x H=y H \Leftrightarrow H x^{-1}=H y^{-1} .
$$

2. Let $G=\boldsymbol{Z}_{8}^{*}$ be a multiplicative group consisting of invertible congruence classes $[a]$ modulo 8, i.e., $\boldsymbol{Z}_{8}^{*}=\{[1],[3],[5],[7]\}$. Let $H=\langle[3]\rangle$ and $K=\langle[5]\rangle$.
(a) Find a subgroup L in G satisfying the following.

$$
\langle H, K\rangle \cap L \neq\langle H \cap L, K \cap L\rangle .
$$

(b) Using your choice of L in the previous problem, check whether the following holds or not.

$$
(H K) \cap L=(H \cap L) K .
$$

Quiz 6

Division:

ID\#:

Name

1. Let H be a subgroup of a group G. Show the following.

$$
x h x^{-1} \in H \text { for all } h \in H, x \in G \Rightarrow x H=H x \text { for all } x \in G .
$$

2. Let $G=G L_{2}(\boldsymbol{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \boldsymbol{R}, a d-b c \neq 0\right\}$,

$$
B=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, b, d \in \boldsymbol{R}, a d \neq 0\right\} \text { and } U=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in \boldsymbol{R}\right\} .
$$

(a) Show that U is a normal subgroup of B.
(b) Show that U is not a normal subgroup of G.

Quiz 7

Let $\alpha: G \rightarrow H$ be a group homomorphism. Prove the following.

1. $\alpha\left(1_{G}\right)=1_{H}$.
2. $\alpha\left(x^{-1}\right)=\alpha(x)^{-1}$ for all $x \in G$.
3. For all $n \in \boldsymbol{Z}$ and $x \in G, \alpha\left(x^{n}\right)=\alpha(x)^{n}$.
4. If $K \leq G$, then $\alpha(K) \leq H$.
5. If $N \triangleleft H$, then $\alpha^{-1}(N) \triangleleft G$.

Message: Any questions or requests?

Quiz 8

Division:

Let G be a group and $\alpha: G \times G \rightarrow G\left((g, x) \mapsto g x g^{-1}\right)$.

1. Show that α defines a left action of G on itself.
2. For $x \in G$, show that $\operatorname{St}_{G}(x)=\{g \mid(g \in G) \wedge(\alpha(g, x)=x)\}$ is a subgroup of G.
3. For $g \in G$, let $\operatorname{Fix}(g)=\{x \mid(x \in G) \wedge(\alpha(g, x)=x)\}$. Show that $\operatorname{Fix}(g)=\operatorname{St}_{G}(g)$, where $\operatorname{St}_{G}(g)$ is the subgroup defined in the previous problem.
4. Suppose $G=S_{4}$, the symmetiric group of degree 4. Let $\sigma=(1,2,3,4)$. Find all elements in $\mathrm{St}_{G}(\sigma)$.
5. Let G and σ be as above. How many elements are there in $\{\alpha(\tau, \sigma) \mid \tau \in G\}$?
