Quiz 1 Division: ID#: Name:

April 15, 2005

1. In \boldsymbol{Z}_{24} find the inverses of [7] and [13].

2. Show that if n is an odd integer, then $n^2 \equiv 1 \pmod{8}$.

3. Find the general solution of the congruence $6x \equiv 11 \pmod{5}$.

Message: What do you expect from this course? Any requests?

Quiz 2 April 22, 2005 Division: ID#: Name: Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 5 & 8 & 3 & 2 & 7 & 6 & 4 \end{pmatrix}, \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 6 & 5 & 2 & 1 & 7 & 3 & 4 \end{pmatrix}.$ 1. Compute π^{-1} .

2. Compute $\pi\sigma$.

3. Compute $\pi \sigma \pi^{-1}$.

4. Express each of π and σ as a product of disjoint cycles.

5. Determine $\operatorname{sign}(\pi)$ and $\operatorname{sign}(\sigma)$.

Message: Any requests?

Quiz 3 Division: ID#: Name:

1. Let S be the subset of $\mathbf{R} \times \mathbf{R}$ specified below and define (x, y) * (x', y') = (x+x', y+y'). Say in each case whether (S, *) is a semigroup, a monoid, a group, or none of these.

(a)
$$S = \{(x, y) \mid x + y \ge 0\};$$

(b)
$$S = \{(x, y) \mid x + y > 0\};$$

(c)
$$S = \{(x, y) \mid |x + y| \ge 1\};$$

(d)
$$S = \{(x, y) \mid 2x + 3y = 0\}.$$

- 2. Let (M, \circ) be a monoid with an identity element e, i.e., for every $x \in M$, $x \circ e = x = e \circ x$.
 - (a) Show that if $a, b, c \in M$ satisfy $a \circ b = e = b \circ c$, then a = c.
 - (b) Suppose $a, b, c \in M$ satisfy $a \circ b = e = b \circ c$ as above. Then $a \circ x = a \circ y$ for $x, y \in M$ implies x = y.
 - (c) Suppose for every $x \in M$ there is an element $y \in M$ such that $x \circ y = e$. Then (M, \circ) is a group.

Message: Any requests or questions?

Quiz 4

Division:

Name:

In each case say whether or not S is a subgroup of the group G:

1.
$$G = GL_n(\mathbf{R}), S = \{A \in G \mid \det(A) = 1\}.$$

ID#:

2.
$$G = (\mathbf{R}, +), S = \{x \in \mathbf{R} \mid |x| \le 1\}.$$

3. $G = \mathbf{R} \times \mathbf{R}$, $S = \{(x, y) \mid 3x - 2y = 1\}$: here the group operation adds the components of ordered pairs.

4. $G = (\mathbf{Z}_6, +), S = \{[0], [1], [5]\}$: here the usual addition of congruence classes is used.

5. $G = (\mathbf{Z}_{11}^*, \cdot), S = \{[1], [7]\}$: here \mathbf{Z}_{11}^* is the set of invertible congruence classes [a] modulo 11, i.e., such that $gcd\{a, 11\} = 1$, and multiplication of congruence classes is used.

Quiz 5 Division: ID#: Name:

- (a) For $x \in G$, let $\ell_x : G \to G$, $(y \mapsto xy)$. Show that ℓ_x is a bijection.
- (b) For $x, y \in G$, show that

$$xH = yH \Leftrightarrow x^{-1}y \in H.$$

(c) For $x, y \in G$, show that

$$xH = yH \Leftrightarrow Hx^{-1} = Hy^{-1}.$$

- 2. Let $G = \mathbb{Z}_8^*$ be a multiplicative group consisting of invertible congruence classes [a] modulo 8, i.e., $\mathbb{Z}_8^* = \{[1], [3], [5], [7]\}$. Let $H = \langle [3] \rangle$ and $K = \langle [5] \rangle$.
 - (a) Find a subgroup L in G satisfying the following.

$$\langle H, K \rangle \cap L \neq \langle H \cap L, \ K \cap L \rangle.$$

(b) Using your choice of L in the previous problem, check whether the following holds or not.

$$(HK) \cap L = (H \cap L)K.$$

Quiz 6 Division: ID#: Name:

June 1, 2005

1. Let H be a subgroup of a group G. Show the following.

$$xhx^{-1} \in H$$
 for all $h \in H$, $x \in G \Rightarrow xH = Hx$ for all $x \in G$.

2. Let
$$G = GL_2(\mathbf{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbf{R}, ad - bc \neq 0 \right\},$$

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \middle| a, b, d \in \mathbf{R}, ad \neq 0 \right\} \text{ and } U = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbf{R} \right\}.$$

(a) Show that U is a normal subgroup of B.

(b) Show that U is not a normal subgroup of G.

Quiz 7 Division:

Name:

Let $\alpha: G \to H$ be a group homomorphism. Prove the following. 1. $\alpha(1_G) = 1_H$.

2. $\alpha(x^{-1}) = \alpha(x)^{-1}$ for all $x \in G$.

ID#:

3. For all $n \in \mathbb{Z}$ and $x \in G$, $\alpha(x^n) = \alpha(x)^n$.

4. If $K \leq G$, then $\alpha(K) \leq H$.

5. If $N \lhd H$, then $\alpha^{-1}(N) \lhd G$.

Quiz 8 Division: ID#: Name: Let G be a group and $\alpha : G \times G \to G((g, x) \mapsto gxg^{-1}).$

1. Show that α defines a left action of G on itself.

2. For $x \in G$, show that $\operatorname{St}_G(x) = \{g \mid (g \in G) \land (\alpha(g, x) = x)\}$ is a subgroup of G.

3. For $g \in G$, let $\operatorname{Fix}(g) = \{x \mid (x \in G) \land (\alpha(g, x) = x)\}$. Show that $\operatorname{Fix}(g) = \operatorname{St}_G(g)$, where $\operatorname{St}_G(g)$ is the subgroup defined in the previous problem.

4. Suppose $G = S_4$, the symmetric group of degree 4. Let $\sigma = (1, 2, 3, 4)$. Find all elements in $St_G(\sigma)$.

5. Let G and σ be as above. How many elements are there in $\{\alpha(\tau, \sigma) \mid \tau \in G\}$?