Algebra I: Midterm 2017

ID#:

Name:

May 31, 2017

(10 pts each)

- 1. Let H and K be subgroups of a group G. Let $a, b \in G$. Show the following.
 - (a) aH = bH if and only if $a^{-1}b \in H$.

(b) $HH = H^{-1} = H$.

(c) $aHa^{-1} \cap K$ is a subgroup of K.

(d) If $aH \subseteq bK$, then $H \leq K$.

- 2. Let H and K be subgroups of a group G. Show the following.
 - (a) Suppose $xhx^{-1} \in H$ for all $x \in G$ and $h \in H$. State the definition of a normal subgroup and show that H is a normal subgroup of G.

(b) If K is of prime order, i.e., |K| = p, where p is a prime number, then $K \approx \mathbf{Z}_p$. (Show both K is cyclic and it is isomorphic to \mathbf{Z}_p .)

(c) Suppose both H and K are normal subgroups of G and |H| = p, |K| = q, where p and q are distinct primes. If G = HK, then G is cyclic.

- 3. Let $G = H \oplus K$, $H = \mathbf{Z}_{15}$ and $K = \mathbf{Z}_9$.
 - (a) Find all subgroups of H. For each subgroup of H, list all generators.

(b) Find the number of elements of order 9 in G. Show work.

(c) Find all subgroups of order 9. Show work.

Algebra I: Solutions to Midtern 2017

- 1. Let H and K be subgroups of a group G. Let $a, b \in G$. Show the following.
 - (a) aH = bH if and only if $a^{-1}b \in H$.

Soln. Since $H \leq G$, $H \neq \emptyset$. Let $a \in H$. Then $a^{-1} \in H$ and $e = aa^{-1} \in H$. Suppose aH = bH. Since $e \in H$, aH = bH implies that $b = be \in bH = aH$. Hence there exists $h \in H$ such that b = ah. Therefore, by multiplying a^{-1} to both hand sides from the left, $a^{-1}b = h \in H$.

Conversely let $a^{-1}b = h \in H$. Then b = ah and

$$bH = ahH \subseteq aH = aeH = ahh^{-1}H = aa^{-1}bh^{-1}H \subseteq bH.$$

Therefore aH = bH.

(b) $HH = H^{-1} = H$.

Soln. Since *H* is a subgroup of *G*, the identity element $e \in H$, for all $x, y \in H$, $xy \in H$ and $x^{-1} \in H$. Moreover, $x = (x^{-1})^{-1} \in H^{-1}$. Thus, $H \subseteq H^{-1}$ and

$$H = eH \subseteq HH \subseteq H \subseteq H^{-1} \subseteq H.$$

Therefore, $HH = H^{-1} = H$.

(c) $aHa^{-1} \cap K$ is a subgroup of K.

Soln. Let $L = aHa^{-1} \cap K$. Clearly, $e = aea^{-1} \in aHa^{-1} \cap K = L$ and $L \neq \emptyset$. Let $x, x' \in L$. Since $L = aHa^{-1} \cap K$, $x, x' \in K$ and there exist $h, h' \in H$ such that $x = aha^{-1}$ and $y = ah'a^{-1}$. Since K is a subgroup of G, $xx'^{-1} \in K$. Moreover, $xx'^{-1} = aha^{-1}ah'^{-1}a^{-1} = ahh'^{-1}a^{-1} \in aHa^{-1}$. Hence $xx^{-1} \in aHa^{-1} \cap K = L$. Therefore, by the one step subgroup test, L is a subgroup of K.

- (d) If $aH \subseteq bK$, then $H \leq K$. **Soln.** Since $a = ae \in aH \subseteq bK$, aK = bK. Note that the condition implies $a^{-1}b = (b^{-1}a)^{-1} \in K$. Use 1 (a). Hence $aH \subseteq aK$ and we have $H \subseteq K$.
- 2. Let H and K be subgroups of a group G. Show the following.
 - (a) Suppose xhx⁻¹ ∈ H for all x ∈ G and h ∈ H. State the definition of a normal subgroup and show that H is a normal subgroup of G.
 Soln. A subgroup H is a normal subgroup of G if and only if aHa⁻¹ = H for all a ∈ G.
 It suffices to show that H ⊆ aHa⁻¹ for all a ∈ G, which is equivalent to a⁻¹Ha ⊆ H. Let h ∈ H and a ∈ G. Then a⁻¹ ∈ G and hence a⁻¹xa = a⁻¹x(a⁻¹)⁻¹ ∈ H. Therefore, a⁻¹Ha ⊂ H and H is a normal subgroup of G.

May 31, 2017

(b) If K is of prime order, i.e., |K| = p, where p is a prime number, then $K \approx \mathbb{Z}_p$. (Show both K is cyclic and it is isomorphic to \mathbb{Z}_p .)

Soln. Since a prime number is at least 2, there is a nonidentity element $x \in K$. Then $\langle x \rangle$ is a subgroup of K of order at least 2. By Lagrange's Theorem, $|\langle x \rangle|$ divides p = |K|. Hence $|\langle x \rangle| = p$ and $\langle x \rangle = K$ as $\langle x \rangle \subseteq K$ by our choice of x. Thus K is a cyclic group of order p. Let

$$\phi: \mathbf{Z}_p = \{0, 1, \dots, p-1\} \to K = \langle x \rangle = \{e, x, x^2, \dots, x^{p-1}\} \ (n \mapsto x^n).$$

Then ϕ is a bijection and $\phi(m+n) = x^{m+n} = x^m x^n = \phi(m)\phi(n)$ and ϕ is operation preserving. Note that $x^s = e$ if and only if $p \mid s$ for every integer s and $m+n \in \mathbb{Z}_p$ is computed modulo p.

- (c) Suppose both H and K are normal subgroups of G and |H| = p, |K| = q, where p and q are distinct primes. If G = HK, then G is cyclic.
 Soln. Since H ∩ K is a subgroup of H and K, the order of H ∩ K divides p and q. Hence it is one. Thus H ∩ K = {e}. Since G = HK, G = H × K. Since G = H × K ≈ H ⊕ K ≈ Z_p ⊕ Z_q = Z_{pq}, G is cyclic. Note that p and q are coprime to each other, Z_p ⊕ Z_q = Z_{pq}.
- 3. Let $G = H \oplus K$, $H = \mathbb{Z}_{15}$ and $K = \mathbb{Z}_9$.
 - (a) Find all subgroups of H. For each subgroup of H, list all generators.Soln. Since H is cyclic, every subgroup of H is cyclic. Moreover, for each divisor of the order, there exists a subgroup of its order, we have the following.
 - i. Order 1: $\{0\}$, 0 is the only generator.
 - ii. Order 3: $\{0, 5, 10\}$, 5 and 10 are generators.
 - iii. Order 5: $\{0, 3, 6, 9, 12\}, 3, 6, 9, 12$ are generators.
 - iv. Order 15: H: 1, 2, 4, 7, 8, 11, 13, 14 are generators.
 - (b) Find the number of elements of order 9 in G. Show work.

Soln. Let H_1 be $\{0, 5, 10\}$ and $K_1 = \{0, 3, 6\}$ the subgroups of order 3 in H and K. Then all elements of order 9 are contained in $H_1 \oplus K$ and all elements of order 1 and 3 are in $H_1 \oplus K_1$. Therefore, elements of order 9 in G are in $H_1 \oplus K \setminus H_1 \oplus K_1$. Hence, there are 27 - 9 = 18 in all.

(c) Find all subgroups of order 9. Show work.

Soln. If the subgroup is cyclic, it is generated by an element of order 9 and each cyclic subgroup of order 9 contains exactly 6 elements of order 9. Hence there are 18/6 = 3 cyclic subgroups. If it is not cyclic, every nonidentity element is of order 3. Therefore it is contained in $H_1 \oplus K_1$ in the previous problem. Since it is of order 9, there are four subgroups of order 9 in all.