Algebra I: Midterm 2017
 ID\#:
 Name:
 (10 pts each)

1. Let H and K be subgroups of a group G. Let $a, b \in G$. Show the following.
(a) $a H=b H$ if and only if $a^{-1} b \in H$.
(b) $H H=H^{-1}=H$.
(c) $a H a^{-1} \cap K$ is a subgroup of K.
(d) If $a H \subseteq b K$, then $H \leq K$.
2. Let H and K be subgroups of a group G. Show the following.
(a) Suppose $x h x^{-1} \in H$ for all $x \in G$ and $h \in H$. State the definition of a normal subgroup and show that H is a normal subgroup of G.
(b) If K is of prime order, i.e., $|K|=p$, where p is a prime number, then $K \approx \boldsymbol{Z}_{p}$. (Show both K is cyclic and it is isomorphic to \boldsymbol{Z}_{p}.)
(c) Suppose both H and K are normal subgroups of G and $|H|=p,|K|=q$, where p and q are distinct primes. If $G=H K$, then G is cyclic.
3. Let $G=H \oplus K, H=\boldsymbol{Z}_{15}$ and $K=\boldsymbol{Z}_{9}$.
(a) Find all subgroups of H. For each subgroup of H, list all generators.
(b) Find the number of elements of order 9 in G. Show work.
(c) Find all subgroups of order 9. Show work.

Algebra I: Solutions to Midtern 2017

1. Let H and K be subgroups of a group G. Let $a, b \in G$. Show the following.
(a) $a H=b H$ if and only if $a^{-1} b \in H$.

Soln. Since $H \leq G, H \neq \emptyset$. Let $a \in H$. Then $a^{-1} \in H$ and $e=a a^{-1} \in H$.
Suppose $a H=b H$. Since $e \in H, a H=b H$ implies that $b=b e \in b H=a H$. Hence there exists $h \in H$ such that $b=a h$. Therefore, by multiplying a^{-1} to both hand sides from the left, $a^{-1} b=h \in H$.
Conversely let $a^{-1} b=h \in H$. Then $b=a h$ and

$$
b H=a h H \subseteq a H=a e H=a h h^{-1} H=a a^{-1} b h^{-1} H \subseteq b H .
$$

Therefore $a H=b H$.
(b) $H H=H^{-1}=H$.

Soln. Since H is a subgroup of G, the identity element $e \in H$, for all $x, y \in H$, $x y \in H$ and $x^{-1} \in H$. Moreover, $x=\left(x^{-1}\right)^{-1} \in H^{-1}$. Thus, $H \subseteq H^{-1}$ and

$$
H=e H \subseteq H H \subseteq H \subseteq H^{-1} \subseteq H
$$

Therefore, $H H=H^{-1}=H$.
(c) $a H a^{-1} \cap K$ is a subgroup of K.

Soln. Let $L=a H a^{-1} \cap K$. Clearly, $e=a e a^{-1} \in a H a^{-1} \cap K=L$ and $L \neq \emptyset$. Let $x, x^{\prime} \in L$. Since $L=a H a^{-1} \cap K, x, x^{\prime} \in K$ and there exist $h, h^{\prime} \in H$ such that $x=a h a^{-1}$ and $y=a h^{\prime} a^{-1}$. Since K is a subgroup of $G, x x^{\prime-1} \in K$. Moreover, $x x^{\prime-1}=a h a^{-1} a h^{\prime-1} a^{-1}=a h h^{-1} a^{-1} \in a H a^{-1}$. Hence $x x^{-1} \in a H a^{-1} \cap K=L$. Therefore, by the one step subgroup test, L is a subgroup of K.
(d) If $a H \subseteq b K$, then $H \leq K$.

Soln. Since $a=a e \in a H \subseteq b K, a K=b K$. Note that the condition implies $a^{-1} b=\left(b^{-1} a\right)^{-1} \in K$. Use 1 (a). Hence $a H \subseteq a K$ and we have $H \subseteq K$.
2. Let H and K be subgroups of a group G. Show the following.
(a) Suppose $x h x^{-1} \in H$ for all $x \in G$ and $h \in H$. State the definition of a normal subgroup and show that H is a normal subgroup of G.
Soln. A subgroup H is a normal subgroup of G if and only if $a H a^{-1}=H$ for all $a \in G$.
It suffices to show that $H \subseteq a H a^{-1}$ for all $a \in G$, which is equivalent to $a^{-1} H a \subseteq H$. Let $h \in H$ and $a \in G$. Then $a^{-1} \in G$ and hence $a^{-1} x a=a^{-1} x\left(a^{-1}\right)^{-1} \in H$. Therefore, $a^{-1} H a \subseteq H$ and H is a normal subgroup of G.
(b) If K is of prime order, i.e., $|K|=p$, where p is a prime number, then $K \approx \boldsymbol{Z}_{p}$. (Show both K is cyclic and it is isomorphic to \boldsymbol{Z}_{p}.)
Soln. Since a prime number is at least 2 , there is a nonidentity element $x \in K$. Then $\langle x\rangle$ is a subgroup of K of order at least 2. By Lagrange's Theorem, $|\langle x\rangle|$ divides $p=|K|$. Hence $|\langle x\rangle|=p$ and $\langle x\rangle=K$ as $\langle x\rangle \subseteq K$ by our choice of x. Thus K is a cyclic group of order p. Let

$$
\phi: \boldsymbol{Z}_{p}=\{0,1, \ldots, p-1\} \rightarrow K=\langle x\rangle=\left\{e, x, x^{2}, \ldots, x^{p-1}\right\}\left(n \mapsto x^{n}\right)
$$

Then ϕ is a bijection and $\phi(m+n)=x^{m+n}=x^{m} x^{n}=\phi(m) \phi(n)$ and ϕ is operation preserving. Note that $x^{s}=e$ if and only if $p \mid s$ for every integer s and $m+n \in \boldsymbol{Z}_{p}$ is computed modulo p.
(c) Suppose both H and K are normal subgroups of G and $|H|=p,|K|=q$, where p and q are distinct primes. If $G=H K$, then G is cyclic.
Soln. Since $H \cap K$ is a subgroup of H and K, the order of $H \cap K$ divides p and q. Hence it is one. Thus $H \cap K=\{e\}$. Since $G=H K, G=H \times K$. Since $G=H \times K \approx H \oplus K \approx \boldsymbol{Z}_{p} \oplus \boldsymbol{Z}_{q}=\boldsymbol{Z}_{p q}, G$ is cyclic. Note that p and q are coprime to each other, $\boldsymbol{Z}_{p} \oplus \boldsymbol{Z}_{q}=\boldsymbol{Z}_{p q}$.
3. Let $G=H \oplus K, H=\boldsymbol{Z}_{15}$ and $K=\boldsymbol{Z}_{9}$.
(a) Find all subgroups of H. For each subgroup of H, list all generators.

Soln. Since H is cyclic, every subgroup of H is cyclic. Moreover, for each divisor of the order, there exists a subgroup of its order, we have the following.
i. Order 1: $\{0\}, 0$ is the only generator.
ii. Order 3: $\{0,5,10\}, 5$ and 10 are generators.
iii. Order 5: $\{0,3,6,9,12\}, 3,6,9,12$ are generators.
iv. Order 15: $H: 1,2,4,7,8,11,13,14$ are generators.
(b) Find the number of elements of order 9 in G. Show work.

Soln. Let H_{1} be $\{0,5,10\}$ and $K_{1}=\{0,3,6\}$ the subgroups of order 3 in H and K. Then all elements of order 9 are contained in $H_{1} \oplus K$ and all elements of order 1 and 3 are in $H_{1} \oplus K_{1}$. Therefore, elements of order 9 in G are in $H_{1} \oplus K \backslash H_{1} \oplus K_{1}$. Hence, there are $27-9=18$ in all.
(c) Find all subgroups of order 9. Show work.

Soln. If the subgroup is cyclic, it is generated by an element of order 9 and each cyclic subgroup of order 9 contains exactly 6 elements of order 9 . Hence there are $18 / 6=3$ cyclic subgroups. If it is not cyclic, every nonidentity element is of order 3. Therefore it is contained in $H_{1} \oplus K_{1}$ in the previous problem. Since it is of order 9 , there are four subgroups of order 9 in all.

