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Quote the following when necessary.

A. Subgroup H of a group G:

H<Ge0+AHCG, 2y H andx™ ' € H for all z,y € H.

B. Order of an Element: Let g be an element of a group G. Then (g) = {¢" |n € Z} is a
subgroup of GG. If there is a positive integer m such that ¢ = e, where e is the identity
element of G, |g| = min{m | g™ =e, m € N} and |g| = |{g)|. Moreover, for any integer
n, |g| divides n if and only if ¢" = e.

C. Lagrange’s Theorem: If H is a subgroup of a finite group G, then |G| = |G : H||H]|.

D. Normal Subgroup: A subgroup H of a group G is normal if gHg™! = H for all g € G.
If H is a normal subgroup of G, then G/H becomes a group with respect to the binary
operation (¢9H)(¢'H) = gg'H.

E. Direct Product: If gcd{m,n} =1, then Z,,, = Z,, ® Z,, and U(mn) =~ U(m) ® U(n).

F. Isomorphism Theorem: If o : G — G is a group homomorphism, Ker(a) = {z € G |
a(x) = eg}, where ez is the identity element of G. Then a(G) < G, Ker(«) is a normal
subgroup of G, and G/Ker(a) = a(G).

G. Sylow’s Theorem: For a finite group G and a prime p, let Syl (G) denote the set of Sylow
p-subgroups of G. Then Syl (G) # 0. Let P € Syl,(G). Then |Syl,(G)| = |G : N(P)| =1
(mod p), where N(P) = {z € G | zPz~! = P}.

Other Theorems: List other theorems you applied in your solutions.



1. Let H be a subgroup of a group G. Let a,b € G. Show the following. (10 pts)

(a) aH = bH if and only if a='b € H.

(b) If aH NbH # 0, then aH = bH.

2. Let a: G — A be an onto group homomorphism, and B a normal subgroup of A. Show
the following. (10 pts)

(a) a™Y(B) = {z € G | a(x) € B} is a normal subgroup of G.

(b) G/a™Y(B) ~ A/B.



3. Let H be a normal subgroup of a group G. Show the following. (20 pts)

(a) For x € G, let ¢, : H — H (h — xhz™!). Then ¢, € Aut(H), i.e., ¢, is a bijective
homomorphism from H to H.

(b) Let ® : G — Aut(H) (z — ¢,). Then & is a (group) homomorphism.

(c) Let C(H) = {x € G| zh = hx forall h € H}. Then C(H) < G and G/C(H) is
isomorphic to a subgroup of Aut(H).

(d) If H is cyclic, then G/C(H) is Abelian.



4. Answer the following questions on Abelian groups of order 32 = 25. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 32 and give a brief explanation.

(b) List all Abelian groups of order 32 in your list in (a) that have exactly seven elements
of order 2. Give your reason.

(c) Express U(5 - 16) as an internal direct product of cyclic subgroups, and identify a
group isomorphic to U(5 - 16) in your list in (a).




ID#: Name:

5. Let G be a group and H a subgroup of G. Show the following. (20 pts)

(a) Forz € G, xHx ' < G.

(b) Suppose for some x € G, G = H(zHz™!'). Then G = H. (Hint: Express 7! as an
element of H(zHz™').)

6. Let p be a prime and P a group of order p?. Show the following.

(a) Let @ be a subgroup of P of order p. Then Q < P.

(b) P is Abelian.



7. Let p and ¢ are distinct primes. Let G be a group of order p?q. Let P € Syl,(G) and
Q € Syl,(G). Show the following. (20 pts)

(a) If @ 4G, then |Syl (G)| = p or p*.

(b) If |Syl,(G)| = p*, then P < G.

(c) If |Syl,(G)| = p, then p > g and P < G.

(d) Find an example of a group G satisfying |Syl, (G)| = p.

Please write your message: Comments on group theory. Suggestions for improvements of
this course. Write on the back of this sheet is also welcome.
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1. Let H be a subgroup of a group G. Let a,b € G. Show the following. (10 pts)

(a) aH = bH if and only if a='b € H.
Soln. Since H <G, H# 0. Leta€ H. Thena ' € H and e = aa™! € H.

Suppose aH = bH. Since e € H, aH = bH implies that b = be € bH = aH. Hence
there exists h € H such that b = ah. Therefore by multiplying b~! to both hand
sides from the left, b=la = h € H.

Conversely let a='b = h € H. Then b = ah and
bH = ahH C aH = aeH = ahh™'H = aa 'bh™'H C bH.

Therefore aH = bH. ]

(b) If aH NbH # 0, then aH = bH.

Soln. Let c € aH NbH. Then ¢ = ah = bh' for some h,h' € H. Soa lc=he H
and b~'c=h' € H. Hence by (a), aH = cH = bH. u

2. Let a: G — A be an onto group homomorphism, and B a normal subgroup of A. Show
the following. (10 pts)

(a) a™!(B) = {z € G | a(x) € B} is a normal subgroup of G.
Soln. Let H = a~'(B). We show H < G by one step subgroup test. For z,y € H,
a(z),a(y) € B. Hence a(z™'y) = a(zx)a(y) € B and 7'y € H. Therefore
H<G.
Let h € H and x € G. Since B is a normal subgroup of A,

alrhz™") = a(z)a(h)a(z) ™ € a(z)Ba(z)™ C B.

Therefore thx™' € H amd xHx~' C H. Since z is arbitrary, v ' Hr = 2 'H(z™')™! C
H. So by multiplying  from the left and x~! from the right, we have H C aHz .
Therefore tHz~' = H for all z € G and H < G. n

(b) G/a™Y(B) ~ A/B.
Soln. Since « is an onto homomorphism, § : G — A/B (x + xB) is an onto

homomorphism as well. Since the kernel is a~!(B), we have G/a~'(B) ~ A/B by
Isomorphism Theorem. [

3. Let H be a normal subgroup of a group G. Show the following. (20 pts)

(a) For x € G, let ¢, : H — H (h — xhz™'). Then ¢, € Aut(H), i.e., ¢, is a bijective
homomorphism from H to H.
Soln. Since H <G, vha™! € xHx ' = H. ¢, is onto as x 'he € H for h € H,
and ¢ (x thz) = zx 'hza™' = h. ¢, is one to one as ¢,(h) = ¢,(I') implies,
rhr™t = zh/z7! and h = I/. ¢, is a homomorphism as ¢,(hh') = zhhz™! =
rhx trha™ = ¢,(h)d.(h'). Therefore ¢, € Aut(H). n



(b)

Let & : G — Aut(H) (x — ¢,). Then @ is a (group) homomorphism.

Soln. ®(zy) = ¢,y and ®(x)P(y) = ¢,¢,. Hence it suffices to show that ¢,, =
¢.¢y, in Aut(H). For h € H,

Guy(h) = xyh(zy) ™" = z(yhy )™t = ¢u(yhy™") = ¢u(dy(h)) = (d20y)(h),
as desired. [ |

Let C(H) = {z € G| zh = hz for all h € H}. Then C(H) < G and G/C(H) is
isomorphic to a subgroup of Aut(H).

Soln. Ker(®) = {x € G| ¢, = idy}, and ¢, = idy if and only if xha=' = h for all
h € H. Thus Ker(®) = C(H). Since Ker® is a normal subgroup in G by Problem
2(a), C(H) < G. n
If H is cyclic, then G/C(H) is Abelian.

Soln. Since G/C(H) is isormophic to a subgroup of Aut(H) by Isomoprhism The-
orem, it suffices to show that Aut(H) is Abelian when H is cyclic. Let H = (x), and
o € Aut(H). Then o(a™) = o(x)" for all n € Z. Hence o is determined by o(z).
Suppose 0,7 € Aut(H) with o(z) = 2* and 7(x) = /. Then

(07)(z) = o(7(x)) = 0(a’) = o(x)) = 2" = 7(2)' = 7(a") = 7(0(2)) = (r0)(2).

Therefore o7 = 70. ]

4. Answer the following questions on Abelian groups of order 32 = 25, (20 pts)

(a)

Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 32 and give a brief explanation.

Soln. Since every finite Abelian group is isomorphic to an external direct product
of cyclic groups, and it can be written uniquely as Z., & Z., & --- @& Z., with
e1 ] es,ea|es, ... e._1| e, which is called of type (eq, e, ..., e,). Therefore we have
(32): Zj

(2,16): Zy® Zy6

(4,8): Z,d Zy

(2,2,8): Zyd Z,® Zs

(2/4,4): Z®»Z, Z,

(2,2,24): Zy®Z: D Z2D Z,4

(2,2,2,2,2): Z2y®Zy P Zy D ZyD Zs

List all Abelian groups of order 32 in your list in (a) that have exactly seven elements
of order 2. Give your reason.

Soln. Seven elements of order 2 form a group isormopic to Zs @ Zs @& Z5, they
are LoD LoD Lgor LoD LD Zy. [ |
Express U(5 - 16) as an internal direct product of cyclic subgroups, and identify a
group isomorphic to U(5 - 16) in your list in (a).

Soln. U(5-16) ~ Uys(5-16) & Us(5 - 16), and (17) = Ue(5 - 16) =~ U(5) ~ Z,,
Us(5-16) = U(16) =~ Zo, ® Z,.

Uis(5-16) = {1,17,33,49} = (17) = (33) = Z,.



Us(5-16) = {1,11,21,31,41,51,61, 71} = (31) x (11) ~ Z, & Z,.

Therefore,
U(5-16) = (31) x (11) x (33) ~ Zo B Z, & Z,4

5. Let G be a group and H a subgroup of G. Show the following. (20 pts)

(a)

(b)

For x € G, zHx™ ! < G.
Soln. For h, W' € H, zha™'zh/z™' = zhh/z™" € tHz ' and (zha™') ' =zh ™! €
xHxz . Therefore tHz ! < G. n
Suppose for some z € G, G = H(xHz™'). Then G = H. (Hint: Express z7! as an
element of H(zHz™').)

Soln. Suppose 27! = hah'z~! for some h,h’ € H. Then hzh' = e and v =
h=th'~! € H. Therefore tHz ' = H, and G = H. |

6. Let p be a prime and P a group of order p?. Show the following.

(a)

Let @ be a subgroup of P of order p. Then Q) < P.

Soln. Suppose @ is not normal in P. Then there exists x € G such that Q #
rQx~!. Since Q NxQx~' = {e}, QrQzr~' = P. This contradicts Problem 5 (b). So
Q is normal. Note that QrzQz~! = P is because if Q = (y), y'zQz™' # y2Qu~!
unless 47 = e, i.e., y* =y’ by Problem 1 (a) and Problem 5 (a). ]
P is Abelian.

Soln. We may assume that P is not cyclic. Hence every nonidentity element of P
generates a cyclic subgroup of order p by (C). Let @ be a subgoup of order p, and
r ¢ Q. Then z is of order p again, as P is not cyclic. Let R = (x). Then both @
and R are normal and @ N R = {e} as x ¢ Q). Threfore QR = Q x R < P. By
comparing their orders, we have P = () x R and P is Abelian. [

7. Let p and ¢ are distinct primes. Let G be a group of order p?q. Let P € Syl,(G) and
Q € Syl,(G). Show the following. (20 pts)

(a)

()

If Q AG, then [Syl (G)| = p or p*.

Soln.  Since p = [Sy1,(G)| = |G : N(@)] and Q < N(Q). By (C), |G N(Q)| | p*
Moreover |G : N(Q)| = 1 if and only if N(Q) = G and Q < G. Hence by our
assumption, we have the conclusion. [ ]
If |Syl,(G)| = p?, then P < G.

Soln. Since there are ¢ — 1 elements of order ¢ in a Sylow g-subgroup of GG, there
are p?(q — 1) elements of order ¢ in G in this case. There are only p? remaining
elements. There are no elements of order ¢ in a Sylow p subgroup of GG, which is of
order p?, P is the unique Sylow p-subgroup and P <1 G.

If |Syl,(G)| = p, then p > g and P < G.

Soln.  Since [Syl (G)| =1 (mod q), ¢ |p— 1. Thus ¢ < p. Since [Syl,(G)| =1
(mod p) and this number divides ¢, [Syl,(G)| = 1 as p > ¢ and p does not divide
g — 1. Therefore, P < G. |
Find an example of a group G satisfying |Syl (G)| = p.

Soln. G:Z3@53,p:3,q:2 |



