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Algebra I: Final 2013 June 24, 2013

ID#: Name:

Quote the following when necessary.

A. Subgroup H of a group G:

H ≤ G ⇔ ∅ 6= H ⊆ G, xy ∈ H and x−1 ∈ H for all x, y ∈ H.

B. Order of an Element: Let g be an element of a group G. Then 〈g〉 = {gn | n ∈ Z} is a
subgroup of G. If there is a positive integer m such that gm = e, where e is the identity
element of G, |g| = min{m | gm = e, m ∈ N} and |g| = |〈g〉|. Moreover, for any integer
n, |g| divides n if and only if gn = e.

C. Lagrange’s Theorem: If H is a subgroup of a finite group G, then |G| = |G : H||H|.

D. Normal Subgroup: A subgroup H of a group G is normal if gHg−1 = H for all g ∈ G.
If H is a normal subgroup of G, then G/H becomes a group with respect to the binary
operation (gH)(g′H) = gg′H.

E. Direct Product: If gcd{m,n} = 1, then Zmn ≈ Zm ⊕ Zn and U(mn) ≈ U(m) ⊕ U(n).

F. Isomorphism Theorem: If α : G → G is a group homomorphism, Ker(α) = {x ∈ G |
α(x) = eG}, where eG is the identity element of G. Then α(G) ≤ G, Ker(α) is a normal
subgroup of G, and G/Ker(α) ≈ α(G).

G. Sylow’s Theorem: For a finite group G and a prime p, let Sylp(G) denote the set of Sylow
p-subgroups of G. Then Sylp(G) 6= ∅. Let P ∈ Sylp(G). Then |Sylp(G)| = |G : N(P )| ≡ 1
(mod p), where N(P ) = {x ∈ G | xPx−1 = P}.

Other Theorems: List other theorems you applied in your solutions.
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1. Let H be a subgroup of a group G. Let a, b ∈ G. Show the following. (10 pts)

(a) aH = bH if and only if a−1b ∈ H.

(b) If aH ∩ bH 6= ∅, then aH = bH.

2. Let α : G → A be an onto group homomorphism, and B a normal subgroup of A. Show
the following. (10 pts)

(a) α−1(B) = {x ∈ G | α(x) ∈ B} is a normal subgroup of G.

(b) G/α−1(B) ≈ A/B.
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3. Let H be a normal subgroup of a group G. Show the following. (20 pts)

(a) For x ∈ G, let φx : H → H (h 7→ xhx−1). Then φx ∈ Aut(H), i.e., φx is a bijective
homomorphism from H to H.

(b) Let Φ : G → Aut(H) (x 7→ φx). Then Φ is a (group) homomorphism.

(c) Let C(H) = {x ∈ G | xh = hx for all h ∈ H}. Then C(H) � G and G/C(H) is
isomorphic to a subgroup of Aut(H).

(d) If H is cyclic, then G/C(H) is Abelian.
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4. Answer the following questions on Abelian groups of order 32 = 25. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 32 and give a brief explanation.

(b) List all Abelian groups of order 32 in your list in (a) that have exactly seven elements
of order 2. Give your reason.

(c) Express U(5 · 16) as an internal direct product of cyclic subgroups, and identify a
group isomorphic to U(5 · 16) in your list in (a).
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5. Let G be a group and H a subgroup of G. Show the following. (20 pts)

(a) For x ∈ G, xHx−1 ≤ G.

(b) Suppose for some x ∈ G, G = H(xHx−1). Then G = H. (Hint: Express x−1 as an
element of H(xHx−1).)

6. Let p be a prime and P a group of order p2. Show the following.

(a) Let Q be a subgroup of P of order p. Then Q � P .

(b) P is Abelian.
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7. Let p and q are distinct primes. Let G be a group of order p2q. Let P ∈ Sylp(G) and
Q ∈ Sylq(G). Show the following. (20 pts)

(a) If Q 6�G, then |Sylq(G)| = p or p2.

(b) If |Sylq(G)| = p2, then P � G.

(c) If |Sylq(G)| = p, then p > q and P � G.

(d) Find an example of a group G satisfying |Sylq(G)| = p.

Please write your message: Comments on group theory. Suggestions for improvements of
this course. Write on the back of this sheet is also welcome.
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1. Let H be a subgroup of a group G. Let a, b ∈ G. Show the following. (10 pts)

(a) aH = bH if and only if a−1b ∈ H.

Soln. Since H ≤ G, H 6= ∅. Let a ∈ H. Then a−1 ∈ H and e = aa−1 ∈ H.

Suppose aH = bH. Since e ∈ H, aH = bH implies that b = be ∈ bH = aH. Hence
there exists h ∈ H such that b = ah. Therefore by multiplying b−1 to both hand
sides from the left, b−1a = h ∈ H.

Conversely let a−1b = h ∈ H. Then b = ah and

bH = ahH ⊂ aH = aeH = ahh−1H = aa−1bh−1H ⊂ bH.

Therefore aH = bH.

(b) If aH ∩ bH 6= ∅, then aH = bH.

Soln. Let c ∈ aH ∩ bH. Then c = ah = bh′ for some h, h′ ∈ H. So a−1c = h ∈ H
and b−1c = h′ ∈ H. Hence by (a), aH = cH = bH.

2. Let α : G → A be an onto group homomorphism, and B a normal subgroup of A. Show
the following. (10 pts)

(a) α−1(B) = {x ∈ G | α(x) ∈ B} is a normal subgroup of G.

Soln. Let H = α−1(B). We show H ≤ G by one step subgroup test. For x, y ∈ H,
α(x), α(y) ∈ B. Hence α(x−1y) = α(x)−1α(y) ∈ B and x−1y ∈ H. Therefore
H ≤ G.

Let h ∈ H and x ∈ G. Since B is a normal subgroup of A,

α(xhx−1) = α(x)α(h)α(x)−1 ∈ α(x)Bα(x)−1 ⊂ B.

Therefore xhx−1 ∈ H amd xHx−1 ⊂ H. Since x is arbitrary, x−1Hx = x−1H(x−1)−1 ⊂
H. So by multiplying x from the left and x−1 from the right, we have H ⊂ xHx−1.
Therefore xHx−1 = H for all x ∈ G and H � G.

(b) G/α−1(B) ≈ A/B.

Soln. Since α is an onto homomorphism, β : G → A/B (x 7→ xB) is an onto
homomorphism as well. Since the kernel is α−1(B), we have G/α−1(B) ≈ A/B by
Isomorphism Theorem.

3. Let H be a normal subgroup of a group G. Show the following. (20 pts)

(a) For x ∈ G, let φx : H → H (h 7→ xhx−1). Then φx ∈ Aut(H), i.e., φx is a bijective
homomorphism from H to H.

Soln. Since H � G, xhx−1 ∈ xHx−1 = H. φx is onto as x−1hx ∈ H for h ∈ H,
and φx(x

−1hx) = xx−1hxx−1 = h. φx is one to one as φx(h) = φx(h
′) implies,

xhx−1 = xh′x−1 and h = h′. φx is a homomorphism as φx(hh′) = xhhx−1 =
xhx−1xhx−1 = φx(h)φx(h

′). Therefore φx ∈ Aut(H).
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(b) Let Φ : G → Aut(H) (x 7→ φx). Then Φ is a (group) homomorphism.

Soln. Φ(xy) = φxy and Φ(x)Φ(y) = φxφy. Hence it suffices to show that φxy =
φxφy in Aut(H). For h ∈ H,

φxy(h) = xyh(xy)−1 = x(yhy−1)x−1 = φx(yhy−1) = φx(φy(h)) = (φxφy)(h),

as desired.

(c) Let C(H) = {x ∈ G | xh = hx for all h ∈ H}. Then C(H) � G and G/C(H) is
isomorphic to a subgroup of Aut(H).

Soln. Ker(Φ) = {x ∈ G | φx = idH}, and φx = idH if and only if xhx−1 = h for all
h ∈ H. Thus Ker(Φ) = C(H). Since KerΦ is a normal subgroup in G by Problem
2(a), C(H) � G.

(d) If H is cyclic, then G/C(H) is Abelian.

Soln. Since G/C(H) is isormophic to a subgroup of Aut(H) by Isomoprhism The-
orem, it suffices to show that Aut(H) is Abelian when H is cyclic. Let H = 〈x〉, and
σ ∈ Aut(H). Then σ(xn) = σ(x)n for all n ∈ Z. Hence σ is determined by σ(x).
Suppose σ, τ ∈ Aut(H) with σ(x) = xi and τ(x) = xj. Then

(στ)(x) = σ(τ(x)) = σ(xj) = σ(x)j = xij = τ(x)i = τ(xi) = τ(σ(x)) = (τσ)(x).

Therefore στ = τσ.

4. Answer the following questions on Abelian groups of order 32 = 25. (20 pts)

(a) Using the Fundamental Theorem of Finite Abelian Groups and list all non-isomorphic
Abelian groups of order 32 and give a brief explanation.

Soln. Since every finite Abelian group is isomorphic to an external direct product
of cyclic groups, and it can be written uniquely as Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zer with
e1 | e2, e2 | e3, . . . , er−1 | er, which is called of type (e1, e2, . . . , er). Therefore we have

(32): Z32

(2,16): Z2 ⊕ Z16

(4,8): Z4 ⊕ Z8

(2,2,8): Z2 ⊕ Z2 ⊕ Z8

(2,4,4): Z2 ⊕ Z4 ⊕ Z4

(2,2,2,4): Z2 ⊕ Z2 ⊕ Z2 ⊕ Z4

(2,2,2,2,2): Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2

(b) List all Abelian groups of order 32 in your list in (a) that have exactly seven elements
of order 2. Give your reason.

Soln. Seven elements of order 2 form a group isormopic to Z2 ⊕ Z2 ⊕ Z2, they
are Z2 ⊕ Z2 ⊕ Z8 or Z2 ⊕ Z4 ⊕ Z4.

(c) Express U(5 · 16) as an internal direct product of cyclic subgroups, and identify a
group isomorphic to U(5 · 16) in your list in (a).

Soln. U(5 · 16) ≈ U16(5 · 16) ⊕ U5(5 · 16), and 〈17〉 = U16(5 · 16) ≈ U(5) ≈ Z4,
U5(5 · 16) ≈ U(16) ≈ Z2 ⊕ Z4.

U16(5 · 16) = {1, 17, 33, 49} = 〈17〉 = 〈33〉 ≈ Z4.
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U5(5 · 16) = {1, 11, 21, 31, 41, 51, 61, 71} = 〈31〉 × 〈11〉 ≈ Z2 ⊕ Z4.

Therefore,
U(5 · 16) = 〈31〉 × 〈11〉 × 〈33〉 ≈ Z2 ⊕ Z4 ⊕ Z4

5. Let G be a group and H a subgroup of G. Show the following. (20 pts)

(a) For x ∈ G, xHx−1 ≤ G.

Soln. For h, h′ ∈ H, xhx−1xh′x−1 = xhh′x−1 ∈ xHx−1 and (xhx−1)−1 = xh−1x−1 ∈
xHx−1. Therefore xHx−1 ≤ G.

(b) Suppose for some x ∈ G, G = H(xHx−1). Then G = H. (Hint: Express x−1 as an
element of H(xHx−1).)

Soln. Suppose x−1 = hxh′x−1 for some h, h′ ∈ H. Then hxh′ = e and x =
h−1h′−1 ∈ H. Therefore xHx−1 = H, and G = H.

6. Let p be a prime and P a group of order p2. Show the following.

(a) Let Q be a subgroup of P of order p. Then Q � P .

Soln. Suppose Q is not normal in P . Then there exists x ∈ G such that Q 6=
xQx−1. Since Q ∩ xQx−1 = {e}, QxQx−1 = P . This contradicts Problem 5 (b). So
Q is normal. Note that QxQx−1 = P is because if Q = 〈y〉, yixQx−1 6= yjxQx−1

unless yi−j = e, i.e., yi = yj by Problem 1 (a) and Problem 5 (a).

(b) P is Abelian.

Soln. We may assume that P is not cyclic. Hence every nonidentity element of P
generates a cyclic subgroup of order p by (C). Let Q be a subgoup of order p, and
x 6∈ Q. Then x is of order p again, as P is not cyclic. Let R = 〈x〉. Then both Q
and R are normal and Q ∩ R = {e} as x 6∈ Q. Threfore QR = Q × R ≤ P . By
comparing their orders, we have P = Q × R and P is Abelian.

7. Let p and q are distinct primes. Let G be a group of order p2q. Let P ∈ Sylp(G) and
Q ∈ Sylq(G). Show the following. (20 pts)

(a) If Q 6�G, then |Sylq(G)| = p or p2.

Soln. Since p = |Sylq(G)| = |G : N(Q)| and Q ≤ N(Q). By (C), |G : N(Q)| | p2.
Moreover |G : N(Q)| = 1 if and only if N(Q) = G and Q � G. Hence by our
assumption, we have the conclusion.

(b) If |Sylq(G)| = p2, then P � G.

Soln. Since there are q − 1 elements of order q in a Sylow q-subgroup of G, there
are p2(q − 1) elements of order q in G in this case. There are only p2 remaining
elements. There are no elements of order q in a Sylow p subgroup of G, which is of
order p2, P is the unique Sylow p-subgroup and P � G.

(c) If |Sylq(G)| = p, then p > q and P � G.

Soln. Since |Sylq(G)| ≡ 1 (mod q), q | p − 1. Thus q < p. Since |Sylp(G)| ≡ 1
(mod p) and this number divides q, |Sylp(G)| = 1 as p > q and p does not divide
q − 1. Therefore, P � G.

(d) Find an example of a group G satisfying |Sylq(G)| = p.

Soln. G = Z3 ⊕ S3, p = 3, q = 2.


