Algebra I: Final 2005 Solutions

- June 23, 2005
- 1. Let H be a nonempty subset of a group G satisfying the following.

$$x^{-1}y \in H$$
 for all $x, y \in H$

- (a) Show that $1 \in H$, $x^{-1} \in H$ and $xy \in H$ for all $x, y \in H$. (This proves that $H \leq G$.) Solution. Since $H \neq \emptyset$, we can take an element $x \in H$. By the condition, $1 = x^{-1}x \in H$. Let x be an arbitrary element of H. Since $x, 1 \in H$, $x^{-1} = x^{-1}1 \in H$. For $x, y \in H$, since $x^{-1} \in H$, $xy = (x^{-1})^{-1}y \in H$. Therefore $1 \in H$, $x^{-1} \in H$ and $xy \in H$ for all $x, y \in H$.
- (b) Suppose $xhx^{-1} \in H$ for all $x \in G$ and $h \in H$. Show that $xHx^{-1} = H$ for all $x \in G$. Solution. By assumption $xHx^{-1} \subseteq H$ for every $x \in G$. Since $x^{-1} \in G$, $x^{-1}Hx = x^{-1}H(x^{-1})^{-1} \subseteq H$. Thus $xHx^{-1} = H$ for all $x \in G$.
- 2. Let H be a subgroup of a group G and N a normal subgroup of G. Let α be a mapping defined by

$$\alpha: H \to G/N \ (h \mapsto hN).$$

(a) Show that α is a group homomorphism and that $\operatorname{Ker}(\alpha) = H \cap N$. Solution. Since N is a normal subgroup of G, G/N is a group with respect to the multiplication defined by $(h_1N)(h_2N) = h_1h_2N$. (Note that $(h_1N)(h_2N) = h_1(Nh_2)H = h_1h_2NN = h_1h_2N$.) Hence for $h_1, h_2 \in H$,

$$\alpha(h_1h_2) = h_1h_2N = (h_1N)(h_2N) = \alpha(h_1)\alpha(h_2).$$

Thus α is a group homomorphism. Hence its kernel is normal and that

$$\begin{aligned} \mathrm{Ker}(\alpha) &= \{h \in H \mid \alpha(h) = \mathbf{1}_{G/N}\} = \{h \in H \mid hN = N\} \\ &= \{h \in H \mid h \in N\} = H \cap N. \end{aligned}$$

Note that since $N \leq G$, $hN = N \Leftrightarrow h \in N$.

(b) Show that $H/H \cap N \simeq HN/N$.

Solution. <u>Claim.</u> $\alpha(H) = HN/N$.

Proof. Since N is a normal subgroup of G, HN = NH. Thus $N \triangleleft HN \leq G$.

$$\alpha(H) = \{hN \mid h \in H\} = \{hnN \mid h \in H, n \in N\} = HN/N.$$

Now by the First Isomorphism Theorem (4.3.4) and 2 (a),

$$H/H \cap N = H/\operatorname{Ker}(\alpha) \simeq \operatorname{Im}(\alpha) = HN/N$$

as desired.

- 3. Let $(\mathbf{Z}_{14}^*, \cdot)$ be a multiplicative group; here \mathbf{Z}_{14}^* is the set of invertible congruence classes [a] modulo 14, i.e., such that $gcd\{a, 14\} = 1$.
 - (a) Show that Z_{14}^* is a cyclic group. Solution. By definition,

$$\boldsymbol{Z}_{14}^{*} = \{[1], [3], [5], [9], [11], [13]\},\$$

and $[3]^2 = [9], [3]^3 = [13], [3]^4 = [11], [3]^5 = [5]$ and $[3]^6 = [1] = [3]^0$. Hence $\mathbf{Z}_{14}^* = \{[3]^n \mid n \in \mathbf{Z}\} = \langle [3] \rangle$ and \mathbf{Z}_{14}^* is a cyclic group.

- (b) Show that $[a]^6 = [1]$ for all $[a] \in \mathbb{Z}_{14}^*$. Show also that $a^6 \equiv 1 \pmod{14}$ for all integers a such that $gcd\{a, 14\} = 1$. Solution. Since \mathbb{Z}_{14}^* is a cyclic group of order 6, $[a] = [3]^i$ for some $i \in \mathbb{Z}$ by (a). Since $[3]^6 = [1], [a]^6 = ([3]^i)^6 = ([3]^6)^i = [1]$. Moreover if $gcd\{a, 14\} = 1, [a] \in \mathbb{Z}_{14}^*$, and $[a]^6 = [a^6] = [1]$. Therefore $a^6 \equiv 1 \pmod{14}$.
- (c) Find a normal subgroup N in Z_{14}^* such that Z_{14}^*/N is a cyclic group of order 2. Solution. Since $2 = |Z_{14}^*/N| = |Z_{14}^*|/|N| = 6/|N|$, |N| = 3. Hence by (4,1,6),

$$N = \langle [3]^{6/3} \rangle = \langle [3]^2 \rangle = \langle [9] \rangle = \{ [1], [9], [11] \}.$$

Clearly $Z_{14}^* = N \cup [3]N$ as $[3]N = \{[3], [13], [5]\}$, and Z_{14}^*/N is a cyclic group of order 2.

- 4. Let S_8 be the symmetric group of degree 8.
 - (a) Let sign : $S_8 \to \{\pm 1\}$ ($\pi \mapsto \text{sign}(\pi)$) be the sign function on S_8 . Show that Ker(sign) is a normal subgroup of S_8 of index 2.

Solution. For $\sigma, \tau \in S_8$, $\operatorname{sign}(\sigma\tau) = \operatorname{sign}(\sigma)\operatorname{sign}(\tau)$. Hence sign is a homomorphism from S_8 to a multiplicative group $\{\pm 1\}$. Hence $\operatorname{Ker}(\operatorname{sign}) \triangleleft S_8$. Since $\operatorname{sign}((12)) = -1$, $\operatorname{Im}(\operatorname{sign}) = \{\pm 1\}$. Thus

$$2 = |\{\pm 1\}| = |S_8 / \text{Ker(sign)}| = |S_8| / |\text{Ker(sign)}| = |S_8 : \text{Ker(sign)}|.$$

Thus the index of Ker(sign) in S_8 is 2.

(b) Let $\sigma = (1, 2, 3, 4)(5, 6, 7)(8) \in S_8$. Find $|\sigma|$ and sign (σ) , the order and the value of the sign function.

Solution. $|\sigma| = \min\{n \in \mathbb{Z} \mid (n > 0) \land (\sigma^n = id)\} = 12$. Since $\sigma = (1, 2, 3, 4)(5, 6, 7)(8) = (1, 4)(1, 3)(1, 2)(5, 7)(5, 6), \operatorname{sign}(\sigma) = (-1)^5 = -1$.

(c) What is the largest possible order of an element of S_8 ? How many elements of S_8 have this order?

Solution. The largest order is

$$\max\{lcm\{n_1, n_2, \dots, n_r\} \mid n_1 + n_2 + \dots + n_r = 8, n_1, n_2, \dots, n_r \ge 1\}.$$

(n_1,\ldots,n_r)	lcm	(n_1,\ldots,n_r)	lcm	$ (n_1,\ldots,n_r) $	lcm
(8)	8	(4,4)	4	(3, 2, 2, 1)	6
(7,1)	7	(4, 3, 1)	12	(3, 2, 1, 1, 1)	6
(6, 2)	12	(4, 2, 2)	4	(3, 1, 1, 1, 1, 1)	3
(6, 1, 1, 1)	6	(4, 2, 1, 1)	4	(2, 2, 2, 2)	2
(5,3)	15	(4, 1, 1, 1, 1)	4	(2, 2, 2, 1, 1)	2
(5, 2, 1)	10	(3, 3, 2)	6	(2, 2, 1, 1, 1, 1)	2
				(1,1,1,1,1,1,1,1)	1

Thus the largest order is 15, and the number of elements having this order is

$$\binom{8}{5} \cdot (5-1)! \cdot (3-1)! = 8 \cdot 7 \cdot 6 \cdot 4 \cdot 2 = 2688.$$

Hear $\binom{8}{5}$ reads 8 choose 5 and it is same as ${}_{8}C_{5}$.

Algebra I: Final 2005

June 23, 2005

Division: ID#:

Name:

1. Let H be a nonempty subset of a group G satisfying the following.

 $x^{-1}y \in H$ for all $x, y \in H$.

(a) Show that $1 \in H$, $x^{-1} \in H$ and $xy \in H$ for all $x, y \in H$. (This proves that $H \leq G$.)

(b) Suppose $xhx^{-1} \in H$ for all $x \in G$ and $h \in H$. Show that $xHx^{-1} = H$ for all $x \in G$.

Division: ID#: Name:

2. Let H be a subgroup of a group G and N a normal subgroup of G. Let α be a mapping defined by

$$\alpha: H \to G/N \ (h \mapsto hN).$$

(a) Show that α is a group homomorphism and that $\operatorname{Ker}(\alpha) = H \cap N$.

(b) Show that $H/H \cap N \simeq HN/N$.

- 3. Let $(\mathbf{Z}_{14}^*, \cdot)$ be a multiplicative group; here \mathbf{Z}_{14}^* is the set of invertible congruence classes [a] modulo 14, i.e., such that $gcd\{a, 14\} = 1$.
 - (a) Show that \boldsymbol{Z}_{14}^* is a cyclic group.

(b) Show that $[a]^6 = [1]$ for all $[a] \in \mathbb{Z}_{14}^*$. Show also that $a^6 \equiv 1 \pmod{14}$ for all integers a such that $gcd\{a, 14\} = 1$.

(c) Find a normal subgroup N in Z_{14}^* such that Z_{14}^*/N is a cyclic group of order 2.

Division: ID#: Name:

- 4. Let S_8 be the symmetric group of degree 8.
 - (a) Let sign : $S_8 \to \{\pm 1\}$ ($\pi \mapsto \text{sign}(\pi)$) be the sign function on S_8 . Show that Ker(sign) is a normal subgroup of S_8 of index 2.

(b) Let $\sigma = (1, 2, 3, 4)(5, 6, 7)(8) \in S_8$. Find $|\sigma|$ and sign (σ) , the order and the value of the sign function.

(c) What is the largest possible order of an element of S_8 ? How many elements of S_8 have this order?

Please write your message: (1) Comments on group theory. Suggestions for improvements of this course.

(2) Comments on the education at ICU. Suggestions for improvements.