Algebra I: Final 2005 Solutions

1. Let H be a nonempty subset of a group G satisfying the following.

$$
x^{-1} y \in H \text { for all } x, y \in H .
$$

(a) Show that $1 \in H, x^{-1} \in H$ and $x y \in H$ for all $x, y \in H$. (This proves that $H \leq G$.)

Solution. Since $H \neq \emptyset$, we can take an element $x \in H$. By the condition, $1=x^{-1} x \in H$. Let x be an arbitrary element of H. Since $x, 1 \in H, x^{-1}=x^{-1} 1 \in H$. For $x, y \in H$, since $x^{-1} \in H, x y=\left(x^{-1}\right)^{-1} y \in H$. Therefore $1 \in H, x^{-1} \in H$ and $x y \in H$ for all $x, y \in H$.
(b) Suppose $x h x^{-1} \in H$ for all $x \in G$ and $h \in H$. Show that $x H x^{-1}=H$ for all $x \in G$.

Solution. By assumption $x H x^{-1} \subseteq H$ for every $x \in G$. Since $x^{-1} \in G, x^{-1} H x=$ $x^{-1} H\left(x^{-1}\right)^{-1} \subseteq H$. Thus $x H x^{-1}=H$ for all $x \in G$.
2. Let H be a subgroup of a group G and N a normal subgroup of G. Let α be a mapping defined by

$$
\alpha: H \rightarrow G / N(h \mapsto h N) .
$$

(a) Show that α is a group homomorphism and that $\operatorname{Ker}(\alpha)=H \cap N$.

Solution. Since N is a normal subgroup of $G, G / N$ is a group with respect to the multiplication defined by $\left(h_{1} N\right)\left(h_{2} N\right)=h_{1} h_{2} N$. (Note that $\left(h_{1} N\right)\left(h_{2} N\right)=h_{1}\left(N h_{2}\right) H=$ $h_{1} h_{2} N N=h_{1} h_{2} N$.) Hence for $h_{1}, h_{2} \in H$,

$$
\alpha\left(h_{1} h_{2}\right)=h_{1} h_{2} N=\left(h_{1} N\right)\left(h_{2} N\right)=\alpha\left(h_{1}\right) \alpha\left(h_{2}\right) .
$$

Thus α is a group homomorphism. Hence its kernel is normal and that

$$
\begin{aligned}
\operatorname{Ker}(\alpha) & =\left\{h \in H \mid \alpha(h)=1_{G / N}\right\}=\{h \in H \mid h N=N\} \\
& =\{h \in H \mid h \in N\}=H \cap N .
\end{aligned}
$$

Note that since $N \leq G, h N=N \Leftrightarrow h \in N$.
(b) Show that $H / H \cap N \simeq H N / N$.

Solution. Claim. $\alpha(H)=H N / N$.
Proof. Since N is a normal subgroup of $G, H N=N H$. Thus $N \triangleleft H N \leq G$.

$$
\alpha(H)=\{h N \mid h \in H\}=\{h n N \mid h \in H, n \in N\}=H N / N .
$$

Now by the First Isomorphism Theorem (4.3.4) and 2 (a),

$$
H / H \cap N=H / \operatorname{Ker}(\alpha) \simeq \operatorname{Im}(\alpha)=H N / N
$$

as desired.
3. Let $\left(\boldsymbol{Z}_{14}^{*}, \cdot\right)$ be a multiplicative group; here \boldsymbol{Z}_{14}^{*} is the set of invertible congruence classes [a] modulo 14 , i.e., such that $\operatorname{gcd}\{a, 14\}=1$.
(a) Show that \boldsymbol{Z}_{14}^{*} is a cyclic group.

Solution. By definition,

$$
\boldsymbol{Z}_{14}^{*}=\{[1],[3],[5],[9],[11],[13]\},
$$

and $[3]^{2}=[9],[3]^{3}=[13],[3]^{4}=[11],[3]^{5}=[5]$ and $[3]^{6}=[1]=[3]^{0}$. Hence $\boldsymbol{Z}_{14}^{*}=\left\{[3]^{n} \mid\right.$ $n \in \boldsymbol{Z}\}=\langle[3]\rangle$ and \boldsymbol{Z}_{14}^{*} is a cyclic group.
(b) Show that $[a]^{6}=[1]$ for all $[a] \in \boldsymbol{Z}_{14}^{*}$. Show also that $a^{6} \equiv 1(\bmod 14)$ for all integers a such that $\operatorname{gcd}\{a, 14\}=1$.
Solution. Since \boldsymbol{Z}_{14}^{*} is a cyclic group of order $6,[a]=[3]^{i}$ for some $i \in \boldsymbol{Z}$ by (a). Since $[3]^{6}=[1],[a]^{6}=\left([3]^{i}\right)^{6}=\left([3]^{6}\right)^{i}=[1]$. Moreover if $\operatorname{gcd}\{a, 14\}=1,[a] \in \boldsymbol{Z}_{14}^{*}$, and $[a]^{6}=\left[a^{6}\right]=[1]$. Therefore $a^{6} \equiv 1(\bmod 14)$.
(c) Find a normal subgroup N in \boldsymbol{Z}_{14}^{*} such that $\boldsymbol{Z}_{14}^{*} / N$ is a cyclic group of order 2 .

Solution. Since $2=\left|\boldsymbol{Z}_{14}^{*} / N\right|=\left|\boldsymbol{Z}_{14}^{*}\right| /|N|=6 /|N|,|N|=3$. Hence by $(4,1,6)$,

$$
N=\left\langle[3]^{6 / 3}\right\rangle=\left\langle[3]^{2}\right\rangle=\langle[9]\rangle=\{[1],[9],[11]\}
$$

Clearly $\boldsymbol{Z}_{14}^{*}=N \cup[3] N$ as $[3] N=\{[3],[13],[5]\}$, and $\boldsymbol{Z}_{14}^{*} / N$ is a cyclic group of order 2.
4. Let S_{8} be the symmetric group of degree 8 .
(a) Let sign : $S_{8} \rightarrow\{ \pm 1\}(\pi \mapsto \operatorname{sign}(\pi))$ be the sign function on S_{8}. Show that $\operatorname{Ker}(\operatorname{sign})$ is a normal subgroup of S_{8} of index 2 .
Solution. For $\sigma, \tau \in S_{8}, \operatorname{sign}(\sigma \tau)=\operatorname{sign}(\sigma) \operatorname{sign}(\tau)$. Hence sign is a homomorphism from S_{8} to a multiplicative group $\{ \pm 1\}$. Hence $\operatorname{Ker}(\operatorname{sign}) \triangleleft S_{8}$. Since $\operatorname{sign}((12))=-1$, $\operatorname{Im}(\operatorname{sign})=\{ \pm 1\}$. Thus

$$
2=|\{ \pm 1\}|=\left|S_{8} / \operatorname{Ker}(\operatorname{sign})\right|=\left|S_{8}\right| /|\operatorname{Ker}(\operatorname{sign})|=\left|S_{8}: \operatorname{Ker}(\operatorname{sign})\right|
$$

Thus the index of $\operatorname{Ker}(\operatorname{sign})$ in S_{8} is 2 .
(b) Let $\sigma=(1,2,3,4)(5,6,7)(8) \in S_{8}$. Find $|\sigma|$ and $\operatorname{sign}(\sigma)$, the order and the value of the sign function.
Solution. $|\sigma|=\min \left\{n \in \boldsymbol{Z} \mid(n>0) \wedge\left(\sigma^{n}=i d\right)\right\}=12$. Since $\sigma=(1,2,3,4)(5,6,7)(8)=$ $(1,4)(1,3)(1,2)(5,7)(5,6), \operatorname{sign}(\sigma)=(-1)^{5}=-1$.
(c) What is the largest possible order of an element of S_{8} ? How many elements of S_{8} have this order?
Solution. The largest order is

$$
\begin{aligned}
& \max \left\{l c m\left\{n_{1}, n_{2}, \ldots, n_{r}\right\} \mid n_{1}+n_{2}+\cdots+n_{r}=8, n_{1}, n_{2}, \ldots, n_{r} \geq 1\right\} . \\
& \begin{array}{l|c||l|l||l|c}
\left(n_{1}, \ldots, n_{r}\right) & l c m & \left(n_{1}, \ldots, n_{r}\right) & l c m & \left(n_{1}, \ldots, n_{r}\right) & l c m \\
\hline(8) & 8 & (4,4) & 4 & (3,2,2,1) & 6 \\
(7,1) & 7 & (4,3,1) & 12 & (3,2,1,1,1) & 6 \\
(6,2) & 12 & (4,2,2) & 4 & (3,1,1,1,1,1) & 3 \\
(6,1,1,1) & 6 & (4,2,1,1) & 4 & (2,2,2,2) & 2 \\
(5,3) & 15 & (4,1,1,1,1) & 4 & (2,2,2,1,1) & 2 \\
(5,2,1) & 10 & (3,3,2) & 6 & (2,2,1,1,1,1) & 2 \\
& & & & (1,1,1,1,1,1,1,1) & 1
\end{array}
\end{aligned}
$$

Thus the largest order is 15 , and the number of elements having this order is

$$
\binom{8}{5} \cdot(5-1)!\cdot(3-1)!=8 \cdot 7 \cdot 6 \cdot 4 \cdot 2=2688
$$

Hear $\binom{8}{5}$ reads 8 choose 5 and it is same as ${ }_{8} C_{5}$.

Algebra I: Final 2005

Division: ID\#: Name:

1. Let H be a nonempty subset of a group G satisfying the following.

$$
x^{-1} y \in H \text { for all } x, y \in H .
$$

(a) Show that $1 \in H, x^{-1} \in H$ and $x y \in H$ for all $x, y \in H$. (This proves that $H \leq G$.)
(b) Suppose $x h x^{-1} \in H$ for all $x \in G$ and $h \in H$. Show that $x H x^{-1}=H$ for all $x \in G$.

Division: ID\#: Name:

2. Let H be a subgroup of a group G and N a normal subgroup of G. Let α be a mapping defined by

$$
\alpha: H \rightarrow G / N(h \mapsto h N) .
$$

(a) Show that α is a group homomorphism and that $\operatorname{Ker}(\alpha)=H \cap N$.
(b) Show that $H / H \cap N \simeq H N / N$.

Division: ID\#: Name:

3. Let $\left(\boldsymbol{Z}_{14}^{*}, \cdot\right)$ be a multiplicative group; here \boldsymbol{Z}_{14}^{*} is the set of invertible congruence classes $[a]$ modulo 14 , i.e., such that $\operatorname{gcd}\{a, 14\}=1$.
(a) Show that \boldsymbol{Z}_{14}^{*} is a cyclic group.
(b) Show that $[a]^{6}=[1]$ for all $[a] \in \boldsymbol{Z}_{14}^{*}$. Show also that $a^{6} \equiv 1(\bmod 14)$ for all integers a such that $\operatorname{gcd}\{a, 14\}=1$.
(c) Find a normal subgroup N in \boldsymbol{Z}_{14}^{*} such that $\boldsymbol{Z}_{14}^{*} / N$ is a cyclic group of order 2.

Division: ID\#: Name:

4. Let S_{8} be the symmetric group of degree 8 .
(a) Let sign : $S_{8} \rightarrow\{ \pm 1\}(\pi \mapsto \operatorname{sign}(\pi))$ be the sign function on S_{8}. Show that $\operatorname{Ker}(\operatorname{sign})$ is a normal subgroup of S_{8} of index 2 .
(b) Let $\sigma=(1,2,3,4)(5,6,7)(8) \in S_{8}$. Find $|\sigma|$ and $\operatorname{sign}(\sigma)$, the order and the value of the sign function.
(c) What is the largest possible order of an element of S_{8} ? How many elements of S_{8} have this order?

Please write your message: (1) Comments on group theory. Suggestions for improvements of this course.
(2) Comments on the educaion at ICU. Suggestions for improvements.

